[1] OHORO C R, ADENIJI A O, OKOH A I, et al. Polybrominated diphenyl ethers in the environmental systems:a review[J]. J Environ Health Sci Engineer, 2021, 19(1):1229-1247. [2] 翟金霞,童世庐.多溴联苯醚的健康效应研究进展[J].中华预防医学杂志, 2016, 50(6):559-562. [3] BABICHUK N, SARKAR A, MULAY S, et al. Polybrominated diphenyl ethers (PBDEs) in marine fish and dietary exposure in Newfoundland[J]. EcoHealth, 2022, 19(1):99-113. [4] GIULIVO M, SUCIU N A, ELJARRAT E, et al. Ecological and human exposure assessment to PBDEs in Adige River[J]. Environ Res, 2018, 164:229-240. [5] HOANG A Q, TRAN T M, TU M B, et al. Polybrominated diphenyl ethers in indoor and outdoor dust from Southeast Asia:an updated review on contamination status, human exposure, and future perspectives[J]. Environ Pollut, 2021, 272:116012. [6] JIANG Y F, YUAN L M, LIN Q H, et al. Polybrominated diphenyl ethers in the environment and human external and internal exposure in China:a review[J]. Sci Total Environ, 2019, 696:133902. [7] WANG S, ZHANG S Z, HUANG H L, et al. Characterization of polybrominated diphenyl ethers (PBDEs) and hydroxylated and methoxylated PBDEs in soils and plants from an e-waste area, China[J]. Environ Pollut, 2014, 184:405-413. [8] WU Z N, HE C, HAN W, et al. Exposure pathways, levels and toxicity of polybrominated diphenyl ethers in humans:a review[J]. Environ Res, 2020, 187:109531. [9] DEVANATHAN G, SUBRAMANIAN A, SUDARYANTO A, et al. Brominated flame retardants and polychlorinated biphenyls in human breast milk from several locations in India:potential contaminant sources in a municipal dumping site[J]. Environ Int, 2012, 39(1):87-95. [10] YU Y J, LIN B G, QIAO J, et al. Levels and congener profiles of halogenated persistent organic pollutants in human serum and semen at an e-waste area in South China[J]. Environ Int, 2020, 138:105666. [11] AZAR N, BOOIJ L, MUCKLE G, et al. Prenatal exposure to polybrominated diphenyl ethers (PBDEs) and cognitive ability in early childhood[J]. Environ Int, 2021, 146:106296. [12] JI F F, SREENIVASMURTHY S G, WEI J T, et al. Study of BDE-47 induced Parkinson's disease-like metabolic changes in C57BL/6 mice by integrated metabolomic, lipidomic and proteomic analysis[J]. J Hazard Mater, 2019, 378:120738. [13] LI P, MA R L, DONG L X, et al. Autophagy impairment contributes to PBDE-47-induced developmental neurotoxicity and its relationship with apoptosis[J]. Theranostics, 2019, 9(15):4375-4390. [14] HE H L, SHI X J, LAWRENCE A, et al. 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) induces wide metabolic changes including attenuated mitochondrial function and enhanced glycolysis in PC12 cells[J]. Ecotoxicol Environ Saf, 2020, 201:110849. [15] COSTA L G, TAGLIAFERRI S, ROQUÉ P J, et al. Role of glutamate receptors in tetrabrominated diphenyl ether (BDE-47) neurotoxicity in mouse cerebellar granule neurons[J]. Toxicol Lett, 2016, 241:159-166. [16] WANG S T, WU C, LIU Z S, et al. Studies on the interaction of BDE-47 and BDE-209 with acetylcholinesterase (AChE) based on the neurotoxicity through fluorescence, UV-vis spectra, and molecular docking[J]. Toxicol Lett, 2018, 287:42-48. [17] LIANG S X, LIANG S J, YIN N Y, et al. Toxicogenomic analyses of the effects of BDE-47/209, TBBPA/S and TCBPA on early neural development with a human embryonic stem cell in vitro differentiation system[J]. Toxicol Appl Pharmacol, 2019, 379:114685. [18] LIU D M, XUE D H, LU W C, et al. BDE-47 induced PC-12 cell differentiation via TrkA downstream pathways and caused the loss of hippocampal neurons in BALB/c mice[J]. J Hazard Mater, 2022, 422:126850. [19] XU L, GAO S Y, ZHAO H X, et al. Integrated proteomic and metabolomic analysis of the testes characterizes BDE-47-induced reproductive toxicity in mice[J]. Biomolecules, 2021, 11(6):821. [20] YOU X Y, XI J, LIU W Y, et al. 2,2',4,4'-tetrabromodiphenyl ether induces germ cell apoptosis through oxidative stress by a MAPKmediated p53-independent pathway[J]. Environ Pollut, 2018, 242:887-893. [21] ROBINSON J, KAPIDZIC M, HAMILTON E, et al. Genomic profiling of BDE-47 effects on human placental cytotrophoblasts[J]. Toxicol Sci, 2018, 167(8):211-226. [22] WANG D Z, YAN J, TENG M M, et al. In utero and lactational exposure to BDE-47 promotes obesity development in mouse offspring fed a high-fat diet:impaired lipid metabolism and intestinal dysbiosis[J]. Arch Toxicol, 2018, 92(5):1847-1860. [23] LUAN M, LIANG H, YANG F, et al. Prenatal polybrominated diphenyl ethers exposure and anogenital distance in boys from a Shanghai birth cohort[J]. Int J Hyg Environ Health, 2019, 222(3):513-523. [24] ZHANG Z, YU Y Q, XU H S, et al. High-fat diet aggravates 2,2',4,4'-tetrabromodiphenyl ether-inhibited testosterone production via DAX-1 in Leydig cells in rats[J]. Toxicol Appl Pharmacol, 2017, 323:1-8. [25] SHAN A Q, LI M X, LI X J, et al. BDE-47 decreases progesterone levels in BeWo cells by interfering with mitochondrial functions and genes related to cholesterol transport[J]. Chem Res Toxicol, 2019, 32(4):621-628. [26] SHEIKH I A, BEG M A. Structural studies on the endocrine-disrupting role of polybrominated diphenyl ethers (PBDEs) in thyroid diseases[J]. Environ Sci Pollut Res, 2020, 27(30):37866-37876. [27] COWELL W J, SJÖDIN A, JONES R, et al. Pre-and postnatal polybrominated diphenyl ether concentrations in relation to thyroid parameters measured during early childhood[J]. Thyroid, 2019, 29(5):631-641. [28] MAKEY C M, MCCLEAN M D, BRAVERMAN L E, et al. Polybrominated diphenyl ether exposure and thyroid function tests in North American adults[J]. Environ Health Perspect, 2016, 124(4):420-425. [29] JACOBSON M H, BARR D B, MARCUS M, et al. Serum polybrominated diphenyl ether concentrations and thyroid function in young children[J]. Environ Res, 2016, 149:222-230. [30] GAO Y, CHEN L M, WANG C F, et al. Exposure to polybrominated diphenyl ethers and female reproductive function:a study in the production area of Shandong, China[J]. Sci Total Environ, 2016, 572:9-15. [31] DUNGAR B M, SCHUPBACH C D, JACOBSON J R, et al. Adrenal corticosteroid perturbation by the endocrine disruptor BDE-47 in a human adrenocortical cell line and male rats[J]. Endocrinology, 2021, 162(11):bqab160. [32] KARANDREA S, YIN H Q, LIANG X M, et al. BDE-47 and BDE-85 stimulate insulin secretion in INS-1832/13 pancreatic β-cells through the thyroid receptor and Akt[J]. Environ Toxicol Pharmacol, 2017, 56:29-34. [33] ZHANG Z F, SHAN Q, ZHUANG J, et al. Troxerutin inhibits 2,2',4,4'-tetrabromodiphenyl ether (BDE-47)-induced hepatocyte apoptosis by restoring proteasome function[J]. Toxicol Lett, 2015, 233(3):246-257. [34] CHEN F, FENG L, ZHENG Y L, et al. 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) induces mitochondrial dysfunction and related liver injury via eliciting miR-34a-5p-mediated mitophagy impairment[J]. Environ Pollut, 2020, 258:113693. [35] YANG C X, ZHU L, KANG Q Z, et al. Chronic exposure to tetrabromodiphenyl ether (BDE-47) aggravates hepatic steatosis and liver fibrosis in diet-induced obese mice[J]. J Hazard Mater, 2019, 378:120766. [36] ZHANG Z F, ZHANG Y Q, FAN S H, et al. Troxerutin protects against 2,2',4,4'-tetrabromodiphenyl ether (BDE-47)-induced liver inflammation by attenuating oxidative stress-mediated NAD+-depletion[J]. J Hazard Mater, 2015, 283:98-109. [37] SØFTELAND L, PETERSEN K, STAVRUM A K, et al. Hepatic in vitro toxicity assessment of PBDE congeners BDE47, BDE153 and BDE154 in Atlantic salmon (Salmo salar L.)[J]. Aquat Toxicol, 2011, 105(3/4):246-263. [38] SAQUIB Q, SIDDIQUI M A, AHMAD J, et al. 6-OHBDE-47 induces transcriptomic alterations of CYP1A1, XRCC2, HSPA1A, EGR1 genes and trigger apoptosis in HepG2 cells[J]. Toxicology, 2018, 400/401:40-47. [39] KHALIL A, CEVIK S E, HUNG S, et al. Developmental exposure to 2, 2',4,4'-tetrabromodiphenyl ether permanently alters blood-liver balance of lipids in male mice[J]. Front Endocrinol (Lausanne), 2018, 9(4):548. [40] LV Q Y, WAN B, GUO L H, et al. In vitro immune toxicity of polybrominated diphenyl ethers on murine peritoneal macrophages:Apoptosis and immune cell dysfunction[J]. Chemosphere, 2015, 120:621-630. [41] LONGO V, LONGO A, DI SANO C, et al. In vitro exposure to 2,2',4,4'-tetrabromodiphenyl ether (PBDE-47) impairs innate inflammatory response[J]. Chemosphere, 2019, 219:845-854. [42] YE S Z, LI S W, MA Y, et al. Curcumin hinders PBDE-47-induced neutrophil extracellular traps release via Nrf2-associated ROS inhibition[J]. Ecotoxicol Environ Saf, 2021, 225:112779. [43] HUANG Y, RAJPUT I R, SANGANYADO E, et al. Immune stimulation effect of PBDEs via prostaglandin pathway in pantropical spotted dolphin:an in vitro study[J]. Chemosphere, 2020, 254:126717. [44] HOLMES A K, KOLLER K R, KIESZAK S M, et al. Case-control study of breast cancer and exposure to synthetic environmental chemicals among Alaska Native women[J]. Int J Circumpolar Health, 2014, 73:25760. [45] ZHANG F, PENG L, HUANG Y T, et al. Chronic BDE-47 exposure aggravates malignant phenotypes and chemoresistance by activating ERK through ERα and GPR30 in endometrial carcinoma[J]. Front Oncol, 2019, 9:1079. |