[1] VINKEN M. The adverse outcome pathway concept:a pragmatic tool in toxicology[J]. Toxicology, 2013, 312:158-165. [2] BENIGNI R, BOSSA C, TCHEREMENSKAIA O. A data-based exploration of the adverse outcome pathway for skin sensitization points to the necessary requirements for its prediction with alternative methods[J]. Regul Toxicol Pharmacol, 2016, 78:45-52. [3] HEMMERICH J, ECKER G F. In silico toxicology:from structure-activity relationships towards deep learning and adverse outcome pathways[J]. Wiley Interdiscip Rev Comput Mol Sci, 2020, 10(4):e1475. [4] OECD. The Adverse Outcome Pathway for Skin Sensitisation Initiated by Covalent Binding to Proteins, OECD Series on Testing and Assessment, No. 168, OECD Publishing, Paris[EB/OL].(2012-05-04)[2014-09-03]https://doi.org/10.1787/9789264221444-en. [5] BARENTSEN H M, JONIS S U, PELGROM S M G J, et al. REACH alternative testing strategy for skin sensitization in practice:fact or fiction-[J]. Regul Toxicol Pharmacol, 2019, 106:292-302. [6] 杨彬, 李遇伯, 张艳军. 基于单细胞转录组学的多基原有毒中药危害识别研究思路及方法[J]. 中草药, 2021, 52(13):3783-3789. [7] KANG D S, YANG J H, KIM H S, et al. Application of the adverse outcome pathway framework to risk assessment for predicting carcinogenicity of chemicals[J]. J Cancer Prev, 2018, 23(3):126-133. [8] PERKINS E J, ASHAUER R, BURGOON L, et al. Building and applying quantitative adverse outcome pathway models for chemical hazard and risk assessment[J]. Environ Toxicol Chem, 2019, 38(9):1850-1865. [9] LEE J W, WON E J, RAISUDDIN S, et al. Significance of adverse outcome pathways in biomarker-based environmental risk assessment in aquatic organisms[J]. J Environ Sci (China), 2015, 35:115-127. [10] REINWALD H, KÖNIG A, AYOBAHAN S U, et al. Toxicogenomic fin(ger)prints for thyroid disruption AOP refinement and biomarker identification in zebrafish embryos[J]. Sci Total Environ, 2021, 760:143914. [11] INOUE K, YAN Q, ARAH O A, et al. Air pollution and adverse pregnancy and birth outcomes:mediation analysis using metabolomic profiles[J]. Curr Environ Health Rep, 2020, 7(3):231-242. [12] EL-MASRI H, KLEINSTREUER N, HINES R N, et al. Integration of life-stage physiologically based pharmacokinetic models with adverse outcome pathways and environmental exposure models to screen for environmental hazards[J]. Toxicol Sci, 2016, 152(1):230-243. [13] FOX D R, VAN DAM R A, FISHER R, et al. Recent developments in species sensitivity distribution modeling[J]. Environ Toxicol Chem, 2021, 40(2):293-308. [14] FORAN C M, RYCROFT T, KEISLER J, et al. A modular approach for assembly of quantitative adverse outcome pathways[J]. ALTEX, 2019, 36(3):353-362. [15] ARZUAGA X, WALKER T, YOST E E, et al. Use of the Adverse Outcome Pathway (AOP) framework to evaluate species concordance and human relevance of Dibutyl phthalate (DBP)-induced male reproductive toxicity[J]. Reprod Toxicol, 2020, 96:445-458. [16] PATLEWICZ G, SIMON T W, ROWLANDS J C, et al. Proposing a scientific confidence framework to help support the application of adverse outcome pathways for regulatory purposes[J]. Regul Toxicol Pharmacol, 2015, 71(3):463-477. [17] VINKEN M, KNAPEN D, VERGAUWEN L, et al. Adverse outcome pathways:a concise introduction for toxicologists[J]. Arch Toxicol, 2017, 91(11):3697-3707. [18] CELANDER M C, GOLDSTONE J V, DENSLOW N D, et al. Species extrapolation for the 21st century[J]. Environ Toxicol Chem, 2011, 30(1):52-63. [19] LIZARRAGA L E, DEAN J L, KAISER J P, et al. A case study on the application of an expert-driven read-across approach in support of quantitative risk assessment of p, p'-dichlorodiphenyldichloroethane[J]. Regul Toxicol Pharmacol, 2019, 103:301-313. [20] LICHTENSTEIN D, LUCKERT C, ALARCAN J, et al. An adverse outcome pathway-based approach to assess steatotic mixture effects of hepatotoxic pesticides in vitro[J]. Food Chem Toxicol, 2020, 139:111283. [21] DOERING J A, DUBIEL J, WISEMAN S. Predicting early life stage mortality in birds and fishes from exposure to low-potency agonists of the aryl hydrocarbon receptor:a cross-species quantitative adverse outcome pathway approach[J]. Environ Toxicol Chem, 2020, 39(10):2055-2064. [22] VILLENEUVE D L, BLACKWELL B R, CAVALLIN J E, et al. Case study in 21st century ecotoxicology:using in vitro aromatase inhibition data to predict short-term in vivo responses in adult female fish[J]. Environ Toxicol Chem, 2021, 40(4):1155-1170. [23] SPINU N, CRONIN M T D, ENOCH S J, et al. Quantitative adverse outcome pathway (qAOP) models for toxicity prediction[J]. Arch Toxicol, 2020, 94(5):1497-1510. [24] JOHANSSON H, GRADIN R. Skin sensitization:challenging the conventional thinking-a case against 2 out of 3 as integrated testing strategy[J]. Toxicol Sci, 2017, 159(1):3-5. [25] 梅承翰, 庄慧敏, 刘师卜, 等. 直接肽反应试验及其研究进展[J]. 中国医药生物技术, 2018, 13(6):556-559. [26] 辻田-井上恭子, 广田卫彦, 足利太可熊, 等. 使用集成测试策略(ITS)对化妆品原料的皮肤致敏性评价法[C]//第十届中国化妆品学术研讨会论文集. 杭州, 2014:361-385. [27] JAWORSKA J S, NATSCH A, RYAN C, et al. Bayesian integrated testing strategy (ITS) for skin sensitization potency assessment:a decision support system for quantitative weight of evidence and adaptive testing strategy[J]. Arch Toxicol, 2015, 89(12):2355-2383. [28] ARNESDOTTER E, SPINU N, FIRMAN J, et al. Derivation, characterisation and analysis of an adverse outcome pathway network for human hepatotoxicity[J]. Toxicology, 2021, 459:152856. [29] LALONE C A, VILLENEUVE D L, BURGOON L D, et al. Molecular target sequence similarity as a basis for species extrapolation to assess the ecological risk of chemicals with known modes of action[J]. Aquat Toxicol, 2013, 144/145:141-154. [30] POTTENGER L H, ANDREWS L S, BACHMAN A N, et al. An organizational approach for the assessment of DNA adduct data in risk assessment:case studies for aflatoxin B1, tamoxifen and vinyl chloride[J]. Crit Rev Toxicol, 2014, 44(4):348-391. [31] KHAN B, HO K T, BURGESS R M. Application of biomarker tools using bivalve models toward the development of adverse outcome pathways for contaminants of emerging concern[J]. Environ Toxicol Chem, 2020, 39(8):1472-1484. [32] GRAMATICA P. Principles of QSAR models validation:internal and external[J]. QSAR Comb Sci, 2007, 26(5):694-701. [33] ELLISON C M, PIECHOTA P, MADDEN J C, et al. Adverse outcome pathway (AOP) informed modeling of aquatic toxicology:QSARs, read-across, and interspecies verification of modes of action[J]. Environ Sci Technol, 2016, 50(7):3995-4007. [34] PATLEWICZ G, ROBERTS D W, APTULA A, et al. Workshop:use of "read-across" for chemical safety assessment under REACH[J]. Regul Toxicol Pharmacol, 2013, 65(2):226-228. [35] BERGGREN E, AMCOFF P, BENIGNI R, et al. Chemical safety assessment using read-across:assessing the use of novel testing methods to strengthen the evidence base for decision making[J]. Environ Health Perspect, 2015, 123(12):1232-1240. [36] HA S, SEIDLE T, LIM K M. Act on the Registration and Evaluation of Chemicals (K-REACH) and replacement, reduction or refinement best practices[J]. Environ Health Toxicol, 2016, 31:e2016026. [37] DIMITROV S D, DIDERICH R, SOBANSKI T, et al. QSAR toolbox-workflow and major functionalities[J]. SAR QSAR Environ Res, 2016, 27(3):203-219. [38] DANESHIAN M, KAMP H, HENGSTLER J, et al. Highlight report:launch of a large integrated European in vitro toxicology project:EU-ToxRisk[J]. Arch Toxicol, 2016, 90(5):1021-1024. [39] VANDENBERG L N. Toxicity testing and endocrine disrupting chemicals[J]. Adv Pharmacol, 2021, 92:35-71. |