[1] KIM S, THAPAR I, BROOKS B W. Epigenetic changes by per-and polyfluoroalkyl substances (PFAS)[J]. Environ Pollut, 2021, 279: 116929. [2] RYU H, LI B K, DE GUISE S, et al. Recent progress in the detection of emerging contaminants PFASs[J]. J Hazard Mater, 2021, 408: 124437. [3] SHOEIB M, HARNER T, M WEBSTER G, et al. Indoor sources of poly-and perfluorinated compounds (PFCS) in Vancouver, Canada: implications for human exposure[J]. Environ Sci Technol, 2011, 45(19): 7999-8005. [4] VAN DER VEEN I, FIEDLER H, DE BOER J. Assessment of the per-and polyfluoroalkyl substances analysis under the Stockholm Convention -2018/2019[J]. Chemosphere, 2023, 313: 137549. [5] IVANTSOVA E, LU A, MARTYNIUK C J. Occurrence and toxicity mechanisms of perfluorobutanoic acid (PFBA) and perfluorobutane sulfonic acid (PFBS) in fish[J]. Chemosphere, 2024, 349: 140815. [6] DIAO J Y, CHEN Z W, WANG T Y, et al. Perfluoroalkyl substances in marine food webs from South China Sea: trophic transfer and human exposure implication[J]. J Hazard Mater, 2022, 431: 128602. [7] JANE L E L, YAMADA M, FORD J, et al. Health-related toxicity of emerging per-and polyfluoroalkyl substances: Comparison to legacy PFOS and PFOA[J]. Environ Res, 2022, 212(Pt C): 113431. [8] HUANG H Y, YU K, ZENG X X, et al. Association between prenatal exposure to perfluoroalkyl substances and respiratory tract infections in preschool children[J]. Environ Res, 2020, 191: 110156. [9] PéREZ F, NADAL M, NAVARRO-ORTEGA A, et al. Accumulation of perfluoroalkyl substances in human tissues[J]. Environ Int, 2013, 59: 354-362. [10] WANG Y, ZHAO H M, ZHANG Q, et al. Perfluorooctane sulfonate induces apoptosis of hippocampal neurons in rat offspring associated with calcium overload[J]. Toxicol Res, 2015, 4(4): 931-938. [11] CHEN M H, HA E H, LIAO H F, et al. Perfluorinated compound levels in cord blood and neurodevelopment at 2 years of age[J]. Epidemiology, 2013, 24(6): 800-808. [12] HUANG R, CHEN Q, ZHANG L, et al. Prenatal exposure to perfluoroalkyl and polyfluoroalkyl substances and the risk of hypertensive disorders of pregnancy[J]. Environ Health, 2019, 18(1): 5. [13] CHEN J W, NIU Q, XIA T, et al. ERK1/2-mediated disruption of BDNF-TrkB signaling causes synaptic impairment contributing to fluoride-induced developmental neurotoxicity[J]. Toxicology, 2018, 410: 222-230. [14] LI W, HE Q Z, WU C Q, et al. PFOS disturbs BDNF-ERK-CREB signalling in association with increased microRNA-22 in SH-SY5Y cells[J]. Biomed Res Int, 2015, 2015: 302653. [15] JIANG T, WANG X Q, DING C, et al. Genistein attenuates isoflurane-induced neurotoxicity and improves impaired spatial learning and memory by regulating cAMP/CREB and BDNF-TrkB-PI3K/Akt signaling[J]. Korean J Physiol Pharmacol, 2017, 21(6): 579-589. [16] SHARMA V K, SINGH T G. CREB: a multifaceted target for Alzheimer’s disease[J]. Curr Alzheimer Res, 2020, 17(14): 1280-1293. [17] AO H S, KO S W, ZHUO M. CREB activity maintains the survival of cingulate cortical pyramidal neurons in the adult mouse brain[J]. Mol Pain, 2006, 2: 15. [18] PARK H, POO M M. Neurotrophin regulation of neural circuit development and function[J]. Nat Rev Neurosci, 2013, 14(1): 7-23. [19] NUMAKAWA T, SUZUKI S, KUMAMARU E, et al. BDNF function and intracellular signaling in neurons[J]. Histol Histopathol, 2010, 25(2): 237-258. [20] POMPURA S L, DOMINGUEZ-VILLAR M. The PI3K/AKT signaling pathway in regulatory T-cell development, stability, and function[J]. J Leukoc Biol, 2018. [21] LIU Y, SUN H, SUN Y. LncRNA p21, downregulating miR-181b, aggravates neuropathic pain by upregulating Tnfaip1 and inhibit the AKT/CREB axis[J]. Brain Res Bull, 2021, 171: 150-161. [22] WANG B N, WU C B, CHEN Z M, et al. DL-3-n-butylphthalide ameliorates diabetes-associated cognitive decline by enhancing PI3K/Akt signaling and suppressing oxidative stress[J]. Acta Pharmacol Sin, 2021, 42(3): 347-360. [23] 曾怀才, 孙诗博, 李武. BDNF/TrkB/CREB信号通路介导PFOS的神经发育毒性[C]//中国毒理学会第四届中青年学者科技论坛论文集. 银川, 2014: 75. |