[1] HAN B F, ZHENG R S, ZENG H M, et al. Cancer incidence and mortality in China, 2022[J]. J Natl Cancer Cent, 2024, 4(1):47-53. [2] LIANG T T, LU L, SONG X T, et al. Combination of microtubule targeting agents with other antineoplastics for cancer treatment[J]. Biochim Biophys Acta Rev Cancer, 2022, 1877(5):188777. [3] ČERMÁK V, DOSTÁL V, JELÍNEK M, et al. Microtubule-targeting agents and their impact on cancer treatment[J]. Eur J Cell Biol, 2020, 99(4):151075. [4] BELLETTI B, BALDASSARRE G. Stathmin:a protein with many tasks. New biomarker and potential target in cancer[J]. Expert Opin Ther Targets, 2011, 15(11):1249-1266. [5] RONG B X, CAI X G, LIU H, et al. Stathmin-dependent molecular targeting therapy for malignant tumor:the latest 5 years' discoveries and developments[J]. J Transl Med, 2016, 14(1):279. [6] JU W T, MA H L, ZHAO T C, et al. Stathmin guides personalized therapy in oral squamous cell carcinoma[J]. Cancer Sci, 2020, 111(4):1303-1313. [7] ZARIN B, ESHRAGHI A, ZARIFI F, et al. A review on the role of tau and stathmin in gastric cancer metastasis[J]. Eur J Pharmacol, 2021, 908:174312. [8] XIE Z, ZHEN T T, LIN Y, et al. The prognostic role of a phospho-Stathmin 1 signature in breast cancer treated with neoadjuvant chemotherapy[J]. Gland Surg, 2022, 11(11):1808-1816. [9] ZHONG F J, SUN B, CAO M M, et al. STMN2 mediates nuclear translocation of Smad2/3 and enhances TGFβ signaling by destabilizing microtubules to promote epithelial-mesenchymal transition in hepatocellular carcinoma[J]. Cancer Lett, 2021, 506:128-141. [10] ZHANG Y M, NI S L, HUANG B, et al. Overexpression of SCLIP promotes growth and motility in glioblastoma cells[J]. Cancer Biol Ther, 2015, 16(1):97-105. [11] SINGER S, MALZ M, HERPEL E, et al. Coordinated expression of stathmin family members by far upstream sequence element-binding protein-1 increases motility in non-small cell lung cancer[J]. Cancer Res, 2009, 69(6):2234-2243. [12] NAIR S, BORA-SINGHAL N, PERUMAL D, et al. Nicotine-mediated invasion and migration of non-small cell lung carcinoma cells by modulating STMN3 and GSPT1 genes in an ID1-dependent manner[J]. Mol Cancer, 2014, 13:173. [13] XIE X M, BARTHOLOMEUSZ C, AHMED A A, et al. Bisphosphorylated PEA-15 sensitizes ovarian cancer cells to paclitaxel by impairing the microtubule-destabilizing effect of SCLIP[J]. Mol Cancer Ther, 2013, 12(6):1099-1111. [14] LAWRENCE E J, CHATTERJEE S, ZANIC M. More is different:Reconstituting complexity in microtubule regulation[J]. J Biol Chem, 2023, 299(12):105398. [15] PAIM L M G, LOPEZ-JAUREGUI A A, MCALEAR T S, et al. The spindle protein CKAP2 regulates microtubule dynamics and ensures faithful chromosome segregation[J]. Proc Natl Acad Sci USA, 2024, 121(9):e2318782121. [16] LU Y, LIU C, XU Y F, et al. Stathmin destabilizing microtubule dynamics promotes malignant potential in cancer cells by epithelial-mesenchymal transition[J]. Hepatobiliary Pancreat Dis Int, 2014, 13(4):386-394. [17] CAMPANACCI V, GIGANT B. The C-terminus of stathmin-like proteins governs the stability of their complexes with tubulin[J]. Biochem Biophys Res Commun, 2023, 682:244-249. [18] LIPS E H, VAN EIJK R, DE GRAAF E J R, et al. Integrating chromosomal aberrations and gene expression profiles to dissect rectal tumorigenesis[J]. BMC Cancer, 2008, 8:314. [19] KWAK Y, NAM S K, PARK Y, et al. Distinctive phenotypic and microenvironmental characteristics of neuroendocrine carcinoma and adenocarcinoma components in gastric mixed adenoneuroendocrine carcinoma[J]. Mod Pathol, 2024, 37(10):100568. [20] SHEN C, YAN Y, YANG S B, et al. Construction and validation of a bladder cancer risk model based on autophagy-related genes[J]. Funct Integr Genomics, 2023, 23(1):46. [21] WU X P, SOOMAN L, LENNARTSSON J, et al. Microtubule inhibition causes epidermal growth factor receptor inactivation in oesophageal cancer cells[J]. Int J Oncol, 2013, 42(1):297-304. [22] ZARYOUH H, DE PAUW I, BAYSAL H, et al. Recent insights in the PI3K/Akt pathway as a promising therapeutic target in combination with EGFR-targeting agents to treat head and neck squamous cell carcinoma[J]. Med Res Rev, 2022, 42(1):112-155. [23] YANG Y M, HONG P, XU W W, et al. Advances in targeted therapy for esophageal cancer[J]. Signal Transduct Target Ther, 2020, 5(1):229. [24] WANG Y N, LIU C, CHEN H, et al. Clinical efficacy and identification of factors confer resistance to afatinib (tyrosine kinase inhibitor) in EGFR-overexpressing esophageal squamous cell carcinoma[J]. Signal Transduct Target Ther, 2024, 9(1):153. [25] YI Y W, YOU K S, PARK J S, et al. Ribosomal protein S6:a potential therapeutic target against cancer-[J]. Int J Mol Sci, 2021, 23(1):48. [26] ARTEMENKO M, ZHONG S S W, TO S K Y, et al. p70 S6 kinase as a therapeutic target in cancers:More than just an mTOR effector[J]. Cancer Lett, 2022, 535:215593. [27] PANWAR V, SINGH A, BHATT M, et al. Multifaceted role of mTOR (mammalian target of rapamycin) signaling pathway in human health and disease[J]. Signal Transduct Target Ther, 2023, 8(1):375. [28] PELAZ S G, TABERNERO A. Src:coordinating metabolism in cancer[J]. Oncogene, 2022, 41(45):4917-4928. [29] POH A R, ERNST M. Functional roles of SRC signaling in pancreatic cancer:Recent insights provide novel therapeutic opportunities[J]. Oncogene, 2023, 42(22):1786-1801. [30] CHEN Z W, OH D, DUBEY A K, et al. EGFR family and Src family kinase interactions:mechanics matters-[J]. Curr Opin Cell Biol, 2018, 51:97-102. [31] ÁLVAREZ-VÁZQUEZ A, SAN-SEGUNDO L, CERVERÓ-GARCÍA P, et al. EGFR amplification and EGFRvIII predict and participate in TAT-Cx43266-283 antitumor response in preclinical glioblastoma models[J]. Neuro Oncol, 2024, 26(7):1230-1246. |