[1] MARANDA E L, AYACHE A, TANEJA R, et al. Chemical warfare’s most notorious agent against the skin[J]. JAMA Dermatol, 2016, 152(8): 933. [2] 海春旭, 刘江正, 孔德钦, 等. 军事舞台上化学武器的群魔乱舞与降魔之盾[J]. 空军军医大学学报, 2024, 15(5): 481-487. [3] ROSE D, SCHMIDT A, BRANDENBURGER M, et al. Sulfur mustard skin lesions: a systematic review on pathomechanisms, treatment options and future research directions[J]. Toxicol Lett, 2018, 293: 82-90. [4] MORADI F, KJELLBERG S, LI Y, et al. Respiratory function after 30+ years following sulfur mustard exposure in survivors in Sweden[J]. Front Med (Lausanne), 2024, 11: 1251500. [5] NAIR A, YADAV P, BEHL A, et al. Toxic blister agents: Chemistry, mode of their action and effective treatment strategies[J]. Chem Biol Interact, 2021, 350: 109654. [6] PANAHI Y, FATTAHI A, NEJABATI H R, et al. DNA repair mechanisms in response to genotoxicity of warfare agent sulfur mustard[J]. Environ Toxicol Pharmacol, 2018, 58: 230-236. [7] JOWSEY P A, BLAIN P G. Checkpoint kinase 1 is activated and promotes cell survival after exposure to sulphur mustard[J]. Toxicol Lett, 2015, 232(2): 413-421. [8] BEHBOUDI H, NOUREINI S K, GHAZANFARI T, et al. DNA damage and telomere length shortening in the peripheral blood leukocytes of 20 years SM-exposed veterans[J]. Int Immunopharmacol, 2018, 61: 37-44. [9] MEDZHITOV R. The spectrum of inflammatory responses[J]. Science, 2021, 374(6571): 1070-1075. [10] JAIN A K, TEWARI-SINGH N, INTURI S, et al. Myeloperoxidase deficiency attenuates nitrogen mustard-induced skin injuries[J]. Toxicology, 2014, 320: 25-33. [11] GROS-DéSORMEAUX F, CAFFIN F, IGERT A, et al. Is CEES a good analog of sulfur mustard- Macroscopic aspect, histology, and molecular biology comparisons between sulfur mustard and CEES-induced skin lesions[J]. Toxicol Lett, 2022, 361: 21-28. [12] SAGAR S, PARIDA S R, SABNAM S, et al. Increasing NO level regulates apoptosis and inflammation in macrophages after 2-chloroethyl ethyl sulphide challenge[J]. Int J Biochem Cell Biol, 2017, 83: 1-14. [13] CHANG Y C, SORIANO M, HAHN R A, et al. Expression of cytokines and chemokines in mouse skin treated with sulfur mustard[J]. Toxicol Appl Pharmacol, 2018, 355: 52-59. [14] 于卫华, 孔德钦, 龙子, 等. 抗氧化悖论真的成立吗-[J]. 癌变·畸变·突变, 2021, 33(5): 388-392. [15] SIES H. Oxidative eustress: On constant alert for redox homeostasis[J]. Redox Biol, 2021, 41: 101867. [16] SABNAM S, RIZWAN H, PAL S, et al. CEES-induced ROS accumulation regulates mitochondrial complications and inflammatory response in keratinocytes[J]. Chem Biol Interact, 2020, 321: 109031. [17] SAWALE S D, AMBHORE P D, PAWAR P P, et al. Ameliorating effect of S-2(ω-aminoalkylamino) alkylaryl sulfide (DRDE-07) on sulfur mustard analogue, 2-chloroethyl ethyl sulfide-induced oxidative stress and inflammation[J]. Toxicol Mech Methods, 2013, 23(9): 702-710. [18] YU D, BEI Y Y, LI Y, et al. In vitro the differences of inflammatory and oxidative reactions due to sulfur mustard induced acute pulmonary injury underlying intraperitoneal injection and intratracheal instillation in rats[J]. Int Immunopharmacol, 2017, 47: 78-87. [19] NEWTON K, STRASSER A, KAYAGAKI N, et al. Cell death[J]. Cell, 2024, 187(2): 235-256. [20] ANDRES D K, KEYSER B M, MELBER A A, et al. Apoptotic cell death in rat lung following mustard gas inhalation[J]. Am J Physiol Lung Cell Mol Physiol, 2017, 312(6): L959-L968. [21] MEI Y Z, ZHANG X R, JIANG N, et al. The injury progression of T lymphocytes in a mouse model with subcutaneous injection of a high dose of sulfur mustard[J]. Mil Med Res, 2014, 1: 28. [22] ZHU X J, MENG X, XU R, et al. Mechanism underlying acute lung injury due to sulfur mustard exposure in rats[J]. Toxicol Ind Health, 2016, 32(8): 1345-1357. [23] RUSZKIEWICZ J, PAPATHEODOROU Y, J-CK N, et al. NAD+ acts as a protective factor in cellular stress response to DNA alkylating agents[J]. Cells, 2023, 12(19): 2396. [24] SHALWITZ R, DAY T, RUEHLMANN A K, et al. Treatment of sulfur mustard corneal injury by augmenting the DNA damage response (DDR): a novel approach[J]. J Pharmacol Exp Ther, 2024, 388(2): 526-535. [25] ROMERO A, RAMOS E, LóPEZ-MU-OZ F, et al. Toxicology of blister agents: is melatonin a potential therapeutic option-[J]. Diseases, 2021, 9(2): 27. [26] 赵晨茜, 徐安琦, 艾多, 等. 线粒体靶向抗氧化剂Mito-TEMPO对氮芥诱导BEAS-2B细胞损伤的影响[J]. 癌变·畸变·突变, 2022, 34(3): 161-168. [27] JAIN A K, TEWARI-SINGH N, INTURI S, et al. Flavanone silibinin treatment attenuates nitrogen mustard-induced toxic effects in mouse skin[J]. Toxicol Appl Pharmacol, 2015, 285(1): 71-78. [28] RAMOS E, GIL-MARTíN E, DE LOS RíOS C, et al. Melatonin as modulator for sulfur and nitrogen mustard-induced inflammation, oxidative stress and DNA damage: molecular therapeutics[J]. Antioxidants (Basel), 2023, 12(2): 397. [29] STENGER B, POPP T, JOHN H, et al. N-Acetyl-L-cysteine inhibits sulfur mustard-induced and TRPA1-dependent calcium influx[J]. Arch Toxicol, 2017, 91(5): 2179-2189. [30] 艾多, 徐安琦, 孔德钦, 等. 催化性抗氧化剂AEOL-10150对氮芥诱导小鼠急性肝损伤的保护作用[J]. 癌变·畸变·突变, 2022, 34(1): 40-46, 61. [31] KANT R, MISHRA N, KANDHARI K, et al. Dexamethasone targets actin cytoskeleton signaling and inflammatory mediators to reverse sulfur mustard-induced toxicity in rabbit corneas[J]. Toxicol Appl Pharmacol, 2024, 483: 116834. [32] MALAVIYA R, BELLOMO A, ABRAMOVA E, et al. Pulmonary injury and oxidative stress in rats induced by inhaled sulfur mustard is ameliorated by anti-tumor necrosis factor-α antibody[J]. Toxicol Appl Pharmacol, 2021, 428: 115677. [33] VENOSA A, GOW J G, HALL L, et al. Regulation of nitrogen mustard-induced lung macrophage activation by valproic acid, a histone deacetylase inhibitor[J]. Toxicol Sci, 2017, 157(1): 222-234. [34] WANG Y F, BARTHEZ M, CHEN D. Mitochondrial regulation in stem cells[J]. Trends Cell Biol, 2024, 34(8): 685-694. [35] SADEGHI S, MOSAFFA N, HASHEMI S M, et al. The immunomodulatory effects of mesenchymal stem cells on long term pulmonary complications in an animal model exposed to a sulfur mustard analog[J]. Int Immunopharmacol, 2020, 80: 105879. [36] FENG Y W, XU Q Q, YANG Y Y, et al. The therapeutic effects of bone marrow-derived mesenchymal stromal cells in the acute lung injury induced by sulfur mustard[J]. Stem Cell Res Ther, 2019, 10(1): 90. [37] AN S, SHEN X, ANWAR K, et al. Therapeutic potential of mesenchymal stem cell-secreted factors on delay in corneal wound healing by nitrogen mustard[J]. Int J Mol Sci, 2022, 23(19): 11510. [38] ZHANG M H, HU S Y, LIU L, et al. Engineered exosomes from different sources for cancer-targeted therapy[J]. Signal Transduct Target Ther, 2023, 8(1): 124. [39] MAO G C, GONG C C, WANG Z, et al. BMSC-derived exosomes ameliorate sulfur mustard-induced acute lung injury by regulating the GPRC5A-YAP axis[J]. Acta Pharmacol Sin, 2021, 42(12): 2082-2093. [40] GONG C C, GU Z Y, ZHANG X K, et al. HMSCs exosome-derived miR-199a-5p attenuates sulfur mustard-associated oxidative stress via the CAV1/NRF2 signalling pathway[J]. J Cell Mol Med, 2023, 27(15): 2165-2182. [41] KHAZDAIR M R, BOSKABADY M H. Possible treatment approaches of sulfur mustard-induced lung disorders, experimental and clinical evidence, an updated review[J]. Front Med (Lausanne), 2022, 9: 791914. |