[1] CAMPISI J. Aging, cellular senescence, and cancer[J]. Annu Rev Physiol, 2013, 75: 685-705. [2] WANG B S, HAN J, ELISSEEFF J H, et al. The senescence-associated secretory phenotype and its physiological and pathological implications[J]. Nat Rev Mol Cell Biol, 2024, 25(12): 958-978. [3] ALIQUE M, SÁNCHEZ-LÓPEZ E, BODEGA G, et al. Hypoxia-inducible factor-1α: the master regulator of endothelial cell senescence in vascular aging[J]. Cells, 2020, 9(1): 195. [4] HAN X J, ZHANG T Y, ZHANG X H, et al. AMPK alleviates oxidative stress-induced premature senescence via inhibition of NF-κB/STAT3 axis-mediated positive feedback loop[J]. Mech Ageing Dev, 2020, 191: 111347. [5] MALLETTE F A, FERBEYRE G. The DNA damage signaling pathway connects oncogenic stress to cellular senescence[J]. Cell Cycle, 2007, 6(15): 1831-1836. [6] PASSOS J F, NELSON G, WANG C F, et al. Feedback between p21 and reactive oxygen production is necessary for cell senescence[J]. Mol Syst Biol, 2010, 6: 347. [7] KOLESNICHENKO M, MIKUDA N, H-PKEN U E, et al. Transcriptional repression of NFKBIA triggers constitutive IKK- and proteasome-independent p65/RelA activation in senescence[J]. EMBO J, 2021, 40(6): e104296. [8] KANG C, XU Q K, MARTIN T D, et al. The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4[J]. Science, 2015, 349(6255): aaa5612. [9] HOARE M, ITO Y, KANG T W, et al. NOTCH1 mediates a switch between two distinct secretomes during senescence[J]. Nat Cell Biol, 2016, 18(9): 979-992. [10] PURVIS J E, KARHOHS K W, MOCK C, et al. p53 dynamics control cell fate[J]. Science, 2012, 336(6087): 1440-1444. [11] XUE W, ZENDER L, MIETHING C, et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas[J]. Nature, 2007, 445(7128): 656-660. [12] COPPé J P, RODIER F, PATIL C K, et al. Tumor suppressor and aging biomarker p16(INK4a) induces cellular senescence without the associated inflammatory secretory phenotype[J]. J Biol Chem, 2011, 286(42): 36396-36403. [13] WANG B S, VARELA-EIRIN M, BRANDENBURG S M, et al. Pharmacological CDK4/6 inhibition reveals a p53-dependent senescent state with restricted toxicity[J]. EMBO J, 2022, 41(6): e108946. [14] HARRISON D E, STRONG R, SHARP Z D, et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice[J]. Nature, 2009, 460(7253): 392-395. [15] LABERGE R M, SUN Y, ORJALO A V, et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation[J]. Nat Cell Biol, 2015, 17(8): 1049-1061. [16] HERRANZ N, GALLAGE S, MELLONE M, et al. mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype[J]. Nat Cell Biol, 2015, 17(9): 1205-1217. [17] NARITA M, YOUNG A R J, ARAKAWA S, et al. Spatial coupling of mTOR and autophagy augments secretory phenotypes[J]. Science, 2011, 332(6032): 966-970. [18] ZHANG Z Y, ZHANG C G. Regulation of cGAS-STING signalling and its diversity of cellular outcomes[J]. Nat Rev Immunol, 2025, 25(6): 425-444. [19] TAKAHASHI A, LOO T M, OKADA R, et al. Downregulation of cytoplasmic DNases is implicated in cytoplasmic DNA accumulation and SASP in senescent cells[J]. Nat Commun, 2018, 9(1): 1249. [20] HARI P, MILLAR F R, TARRATS N, et al. The innate immune sensor Toll-like receptor 2 controls the senescence-associated secretory phenotype[J]. Sci Adv, 2019, 5(6): eaaw0254. [21] LIU P Y, LI F M, LIN J H, et al. M(6)A-independent genome-wide METTL3 and METTL14 redistribution drives the senescence-associated secretory phenotype[J]. Nat Cell Biol, 2021, 23(4): 355-365. [22] TASDEMIR N, BANITO A, ROE J S, et al. BRD4 connects enhancer remodeling to senescence immune surveillance[J]. Cancer Discov, 2016, 6(6): 612-629. [23] GUAN Y T, ZHANG C, LYU G L, et al. Senescence-activated enhancer landscape orchestrates the senescence-associated secretory phenotype in murine fibroblasts[J]. Nucleic Acids Res, 2020, 48(19): 10909-10923. [24] HAYAKAWA T, IWAI M, AOKI S, et al. SIRT1 suppresses the senescence-associated secretory phenotype through epigenetic gene regulation[J]. PLoS One, 2015, 10(1): e0116480. [25] ZIRKEL A, NIKOLIC M, SOFIADIS K, et al. HMGB2 loss upon senescence entry disrupts genomic organization and induces CTCF clustering across cell types[J]. Mol Cell, 2018, 70(4): 730-744.e6. [26] KRTOLICA A, PARRINELLO S, LOCKETT S, et al. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging[J]. Proc Natl Acad Sci USA, 2001, 98(21): 12072-12077. [27] HASTON S, GONZALEZ-GUALDA E, MORSLI S, et al. Clearance of senescent macrophages ameliorates tumorigenesis in KRAS-driven lung cancer[J]. Cancer Cell, 2023, 41(7): 1242-1260.e6. [28] TAKASUGI M, OKADA R, TAKAHASHI A, et al. Small extracellular vesicles secreted from senescent cells promote cancer cell proliferation through EphA2[J]. Nat Commun, 2017, 8: 15729. [29] DI G H, LIU Y, LU Y, et al. IL-6 secreted from senescent mesenchymal stem cells promotes proliferation and migration of breast cancer cells[J]. PLoS One, 2014, 9(11): e113572. [30] HUANG C B, LI N, LI Z X, et al. Tumour-derived Interleukin 35 promotes pancreatic ductal adenocarcinoma cell extravasation and metastasis by inducing ICAM1 expression[J]. Nat Commun, 2017, 8: 14035. [31] CHEN Z H, GIOTTI B, KALUZOVA M, et al. A paracrine circuit of IL-1β/IL-1R1 between myeloid and tumor cells drives genotype-dependent glioblastoma progression[J]. J Clin Invest, 2023, 133(22): e163802. [32] XIAO R R, YOU L X, ZHANG L, et al. Inhibiting the IRE1α axis of the unfolded protein response enhances the antitumor effect of AZD1775 in TP53 mutant ovarian cancer[J]. Adv Sci, 2022, 9(21): 2105469. [33] KANG J, CHEN W Q, XIA J P, et al. Extracellular matrix secreted by senescent fibroblasts induced by UVB promotes cell proliferation in HaCaT cells through PI3K/AKT and ERK signaling pathways[J]. Int J Mol Med, 2008, 21(6): 777-784. [34] COPPE J P, BOYSEN M, SUN C H, et al. A role for fibroblasts in mediating the effects of tobacco-induced epithelial cell growth and invasion[J]. Mol Cancer Res, 2008, 6(7): 1085-1098. [35] CAI L, XU S Y, PIAO C M, et al. Adiponectin induces CXCL1 secretion from cancer cells and promotes tumor angiogenesis by inducing stromal fibroblast senescence[J]. Mol Carcinog, 2016, 55(11): 1796-1806. [36] OUBAHA M, MILOUDI K, DEJDA A, et al. Senescence-associated secretory phenotype contributes to pathological angiogenesis in retinopathy[J]. Sci Transl Med, 2016, 8(362): 362ra144. [37] PARRINELLO S, COPPE J P, KRTOLICA A, et al. Stromal-epithelial interactions in aging and cancer: senescent fibroblasts alter epithelial cell differentiation[J]. J Cell Sci, 2005, 118(Pt 3): 485-496. [38] AL-KHALAF H H, GHEBEH H, INASS R, et al. Senescent breast luminal cells promote carcinogenesis through interleukin-8-dependent activation of stromal fibroblasts[J]. Mol Cell Biol, 2019, 39(2): e00359-18. [39] 冯英瑛, 肖汀, 冯林. 衰老肿瘤相关成纤维细胞及其在肿瘤进展中的作用[J]. 癌变·畸变·突变, 2025, 37(4): 308-309, 335. [40] MIAO J W, LIU L J, HUANG J. Interleukin-6-induced epithelial-mesenchymal transition through signal transducer and activator of transcription 3 in human cervical carcinoma[J]. Int J Oncol, 2014, 45(1): 165-176. [41] RUHLAND M K, LOZA A J, CAPIETTO A H, et al. Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis[J]. Nat Commun, 2016, 7: 11762. [42] FOUSEK K, HORN L A, PALENA C. Interleukin-8: a chemokine at the intersection of cancer plasticity, angiogenesis, and immune suppression[J]. Pharmacol Ther, 2021, 219: 107692. [43] EGGERT T, WOLTER K, JI J L, et al. Distinct functions of senescence-associated immune responses in liver tumor surveillance and tumor progression[J]. Cancer Cell, 2016, 30(4): 533-547. [44] XU Q X, LONG Q L, ZHU D X, et al. Targeting amphiregulin (AREG) derived from senescent stromal cells diminishes cancer resistance and averts programmed cell death 1 ligand (PD-L1)-mediated immunosup-pression[J]. Aging Cell, 2019, 18(6): e13027. [45] CALCINOTTO A, KOHLI J, ZAGATO E, et al. Cellular senescence: aging, cancer, and injury[J]. Physiol Rev, 2019, 99(2): 1047-1078. [46] VAN DEURSEN J M. The role of senescent cells in ageing[J]. Nature, 2014, 509(7501): 439-446. [47] KORTLEVER R M, HIGGINS P J, BERNARDS R. Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence[J]. Nat Cell Biol, 2006, 8(8): 877-884. [48] ORJALO A V, BHAUMIK D, GENGLER B K, et al. Cell surface-bound IL-1alpha is an upstream regulator of the senescence-associated IL-6/IL-8 cytokine network[J]. Proc Natl Acad Sci USA, 2009, 106(40): 17031-17036. [49] GUO H Y, LIU Z J, XU B, et al. Chemokine receptor CXCR2 is transactivated by p53 and induces p38-mediated cellular senescence in response to DNA damage[J]. Aging Cell, 2013, 12(6): 1110-1121. [50] YIN K, PATTEN D, GOUGH S, et al. Senescence-induced endothelial phenotypes underpin immune-mediated senescence surveillance[J]. Genes Dev, 2022, 36(9/10): 533-549. [51] RUSCETTI M, MORRIS J P, MEZZADRA R, et al. Senescence-induced vascular remodeling creates therapeutic vulnerabilities in pancreas cancer[J]. Cell, 2021, 184(18): 4838-4839. [52] -ZDEMIR A, -IMAY DEMIR Y D, YE-ILYURT Z E, et al. Senescent cells and SASP in cancer microenvironment: New approaches in cancer therapy[J]. Adv Protein Chem Struct Biol, 2023, 133: 115-158. [53] 李俊毅, 肖汀. 细胞衰老与卵巢癌铂类化疗敏感性关系的研究进展[J]. 癌变·畸变·突变, 2025, 37(4): 277-280. [54] 张伟洁, 李靖华, 刘寒, 等. 衰老细胞靶向治疗的抗癌作用研究进展[J]. 癌变·畸变·突变, 2025, 37(4): 292-295, 299. [55] 智晓琛, 肖汀. 细胞衰老在肺癌微环境中的双向作用及其治疗意义[J]. 癌变·畸变·突变, 2025, 37(4): 284-287. [56] ZHU Y, TCHKONIA T, PIRTSKHALAVA T, et al. The Achilles' heel of senescent cells: from transcriptome to senolytic drugs[J]. Aging Cell, 2015, 14(4): 644-658. [57] ZHANG L, PITCHER L E, PRAHALAD V, et al. Targeting cellular senescence with senotherapeutics: senolytics and senomorphics[J]. FEBS J, 2023, 290(5): 1362-1383. [58] BASISTY N, KALE A, JEON O H, et al. A proteomic atlas of senescence-associated secretomes for aging biomarker development[J]. PLoS Biol, 2020, 18(1): e3000599. |