[1] FARABEGOLI F, BLANCO L, RODRíGUEZ L P, et al. Phycotoxins in marine shellfish: origin, occurrence and effects on humans[J]. Mar Drugs, 2018, 16(6): 188. [2] O'NEILL K, MUSGRAVE I F, HUMPAGE A. Low dose extended exposure to saxitoxin and its potential neurodevelopmental effects: a review[J]. Environ Toxicol Pharmacol, 2016, 48: 7-16. [3] O’NEILL K, MUSGRAVE I F, HUMPAGE A. Extended lowdose exposure to saxitoxin inhibits neurite outgrowth in model neuronal cells[J]. Basic Clin Pharmacol Toxicol, 2017, 120(4): 390-397. [4] ZHOU Y, LI S P, ZHANG J Y, et al. Dietary exposure assessment of paralytic shellfish toxins through shellfish consumption in Shenzhen population, China[J]. Environ Sci Pollut Res Int, 2022, 29(7): 10222-10234. [5] LIMA-FILHO C M, NOGAROLI L, HEDIN-PEREIRA C, et al. Effects of saxitoxins exposure on oligodendrocyte development in mouse neonates[J]. Toxicon, 2020, 188: 89-94. [6] CERVANTES C R C, DURáN R, FARO L F, et al. Effects of systemic administration of saxitoxin on serotonin levels in some discrete rat brain regions[J]. Med Chem, 2009, 5(4): 336-342. [7] SUN Q, CHEN X, LIU W, et al. Effects of long-term low dose saxitoxin exposure on nerve damage in mice[J]. Aging, 2021, 13(13): 17211-17226. [8] ALEKSANDER S A, BALHOFF J, CARBON S, et al. The gene ontology knowledgebase in 2023[J]. Genetics, 2023, 224(1): iyad031. [9] KANEHISA M, FURUMICHI M, SATO Y, et al. KEGG for taxonomy-based analysis of pathways and genomes[J]. Nucleic Acids Res, 2023, 51(D1): D587-D592. [10] DELCOURT N, ARNICH N, SINNO-TELLIER S, et al. Mild paralytic shellfish poisoning (PSP) after ingestion of mussels contaminated below the European regulatory limit[J]. Clin Toxicol, 2021, 59(1): 76-77. [11] HALLEGRAEFF G M, ANDERSON D M, BELIN C, et al. Perceived global increase in algal blooms is attributable to intensified monitoring and emerging bloom impacts[J]. Commun Earth Environ, 2021, 2. DOI: 10.1038/s43247-021-00178-8. [12] SHARANEK A, BURBAN A, LAAPER M, et al. OSMR controls glioma stem cell respiration and confers resistance of glioblastoma to ionizing radiation[J]. Nat Commun, 2020, 11(1): 4116. [13] ELKHOLI R, ABRAHAM-ENACHESCU I, TROTTA A P, et al. MDM2 integrates cellular respiration and apoptotic signaling through NDUFS1 and the mitochondrial network[J]. Mol Cell, 2019, 74(3): 452-465.e7. [14] PERLUIGI M, DI DOMENICO F, BUTTERFIELD D A. Oxidative damage in neurodegeneration: roles in the pathogenesis and progression of Alzheimer disease[J]. Physiol Rev, 2024, 104(1): 103-197. [15] FIORILLO M, SCATENA C, NACCARATO A G, et al. Bedaquiline, an FDA-approved drug, inhibits mitochondrial ATP production and metastasis in vivo, by targeting the gamma subunit (ATP5F1C) of the ATP synthase[J]. Cell Death Differ, 2021, 28(9): 2797-2817. [16] BUTTERFIELD D A, HALLIWELL B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease[J]. Nat Rev Neurosci, 2019, 20(3): 148-160. [17] CUNNANE S C, TRUSHINA E, MORLAND C, et al. Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing[J]. Nat Rev Drug Discov, 2020, 19(9): 609-633. [18] WU Z F, HE K K, CHEN Y, et al. A sensitive GRAB sensor for detecting extracellular ATP in vitro and in vivo[J]. Neuron, 2022, 110(5): 770-782. [19] BADIMON A, STRASBURGER H J, AYATA P, et al. Negative feedback control of neuronal activity by microglia[J]. Nature, 2020, 586(7829): 417-423. |