Carcinogenesis, Teratogenesis & Mutagenesis ›› 2019, Vol. 31 ›› Issue (6): 492-497.doi: 10.3969/j.issn.1004-616x.2019.06.015
Received:
2018-10-23
Revised:
2019-10-09
Online:
2019-11-30
Published:
2019-12-04
CLC Number:
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] International Conference on Harmonization. Guidance on genotoxicity testing and data interpretation for pharmaceuticals intended for human use S2(R1) (Step 4 version)[EB/OL]. (2011-11-09)[2016-4-11]. http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Safety/S2_R1/Step4/S2R1_Step4.pdf.; [2] IIDA Y, TAKEDA J, MIYATA T, et al. Characterization of genomic PIG-A gene:a gene for glycosylphosphatidylinositol-anchor biosynthesis and paroxysmal nocturnal hemoglobinuria[J]. Blood, 1994, 83(11):3126-3131.; [3] KAWAGOE K, KITAMURA D, OKABE M, et al. Glycosylphosphatidylinositol-anchor-deficient mice:implications for clonal dominance of mutant cells in paroxysmal nocturnal hemoglobinuria[J]. Blood, 1996, 87(9):3600-3606.; [4] KAWAGOE K, TAKEDA J, ENDO Y, et al. Molecular cloning of murine pig-a, a gene for GPI-anchor biosynthesis, and demonstration of interspecies conservation of its structure, function, and genetic locus[J]. Genomics, 1994, 23(3):566-574.; [5] TAKEDA J, MIYATA T, KAWAGOE K, et al. Deficiency of the GPI anchor caused by a somatic mutation of the PIG-A gene in paroxysmal nocturnal hemoglobinuria[J]. Cell, 1993, 73(4):703-711.; [6] ARATEN D J, NAFA K, PAKDEESUWAN K, et al. Clonal populations of hematopoietic cells with paroxysmal nocturnal hemoglobinuria genotype and phenotype are present in normal individuals[J]. Proc Natl Acad Sci USA, 1999, 96(9):5209-5214.; [7] BRYCE S M, BEMIS J C, DERTINGER S D. In vivo mutation assay based on the endogenous Pig-a locus[J]. Environ Mol Mutagen, 2008, 49(4):256-264.; [8] MIURA D, DOBROVOLSKY V N, KASAHARA Y, et al. Development of an in vivo gene mutation assay using the endogenous Pig-A gene:I. Flow cytometric detection of CD59-negative peripheral red blood cells and CD48-negative spleen T-cells from the rat[J]. Environ Mol Mutagen, 2008, 49(8):614-621.; [9] MIURA D, DOBROVOLSKY V N, MITTELSTAEDT R A, et al. Development of an in vivo gene mutation assay using the endogenous Pig-A gene:II. Selection of Pig-A mutant rat spleen T-cells with proaerolysin and sequencing Pig-A cDNA from the mutants[J]. Environ Mol Mutagen, 2008, 49(8):622-630.; [10] DOBROVOLSKY V N, MIURA D, HEFLICH R H, et al. The in vivo Pig-a gene mutation assay, a potential tool for regulatory safety assessment[J]. Environ Mol Mutagen, 2010, 51(8/9):825-835.; [11] GOLLAPUDI B B, LYNCH A M, HEFLICH R H, et al. The in vivo pig-a assay:A report of the international workshop on genotoxicity testing (IWGT) workgroup[J]. Mutat Res Genet Toxicol Environ Mutagen, 2015, 783:23-35.; [12] DOBROVOLSKY V N, SHADDOCK J G, MITTELSTAEDT R A, et al. Evaluation of Macaca mulatta as a model for genotoxicity studies[J]. Mutat Res Toxicol Environ Mutagen, 2009, 673(1):21-28.; [13] PHONETHEPSWATH S, FRANKLIN D, TOROUS D K, et al. Pig-a mutation:kinetics in rat erythrocytes following exposure to five prototypical mutagens[J]. Toxicol Sci, 2010, 114(1):59-70.; [14] DOBROVOLSKY V N, BOCTOR S Y, TWADDLE N C, et al. Flow cytometric detection of Pig-A mutant red blood cells using an erythroid-specific antibody:application of the method for evaluating the in vivo genotoxicity of methylphenidate in adolescent rats[J]. Environ Mol Mutagen, 2010, 51(2):138-145.; [15] CHEN G F, WEN H R, MAO Z H, et al. Assessment of the Pig-a, micronucleus, and comet assay endpoints in rats treated by acute or repeated dosing protocols with procarbazine hydrochloride and ethyl carbamate[J]. Environ Mol Mutagen, 2019, 60(1):56-71.; [16] NISHIMURA J, MURAKAMI Y, KINOSHITA T. Paroxysmal nocturnal hemoglobinuria:An acquired genetic disease[J]. Am J Hematol, 1999, 62(3):175-182.; [17] ALBERTINI R J. PIG-A as a reporter gene for somatic mutations in humans[J]. Environ Mol Mutagen, 2008, 49(7):539.; [18] PARKER M W, VAN DER GOOT F G, BUCKLEY J T. Aerolysin:the ins and outs of a model channel-forming toxin[J]. Mol Microbiol, 1996, 19(2):205-212.; [19] MIURA D, DOBROVOLSKY V N, KIMOTO T, et al. Accumulation and persistence of Pig-A mutant peripheral red blood cells following treatment of rats with single and split doses of N-ethyl-N-nitrosourea[J]. Mutat Res, 2009, 677(1/2):86-92.; [20] DERTINGER S D, PHONETHEPSWATH S, FRANKLIN D, et al. Integration of mutation and chromosomal damage endpoints into 28-day repeat dose toxicology studies[J]. Toxicol Sci, 2010, 115(2):401-411.; [21] YOSHIDA I, MATSUMOTO A, SAKAI Y M, et al. Pyrene did not induce gene mutation in red blood cell Pig-a assay and PIGRET assay in rats[J]. Mutation Research/Genetic Toxicology And Environmental Mutagenesis, 2016, 811:49-53.; [22] GOLLAPUDI B B, LYNCH A M, HEFLICH R H, et al. The in vivo pig-a assay:A report of the international workshop on genotoxicity testing (IWGT) workgroup[J]. Mutat Res Genet Toxicol Environ Mutagen, 2015, 783:23-35.; [23] DERTINGER S D, PHONETHEPSWATH S, AVLASEVICH S L, et al. Efficient monitoring of in vivo pig-a gene mutation and chromosomal damage:summary of 7 published studies and results from 11 new reference compounds[J]. Toxicol Sci, 2012, 130(2):328-348.; [24] MIURA D, DOBROVOLSKY V, HEFLICH R. Molecular aspects and potential advantages of Pig-A gene high throughput assay in the rat[J]. Environ Mol Mutagen, 2008, 49(7):539.; [25] LEMIEUX C L, DOUGLAS G R, GINGERICH J, et al. Simultaneous measurement of benzo[a]pyrene-induced Pig-a and lacZ mutations, micronuclei and DNA adducts in MutaTM Mouse[J]. Environ Mol Mutagen, 2011, 52(9):756-765.; [26] DERTINGER S D, PHONETHEPSWATH S, WELLER P, et al. International Pig-a gene mutation assay trial:evaluation of transferability across 14 laboratories[J]. Environ Mol Mutagen, 2011, 52(9):690-698.; [27] CAMMERER Z, BHALLI J A, CAO X F, et al. Report on stage III Pig-a mutation assays using N-ethyl-N-nitrosourea-comparison with other in vivo genotoxicity endpoints[J]. Environ Mol Mutagen, 2011, 52(9):721-730.; [28] LYNCH A M, GIDDINGS A, CUSTER L, et al. International Pig-a gene mutation assay trial (stage III):results with N-methyl-N-nitrosourea[J]. Environ Mol Mutagen, 2011, 52(9):699-710.; [29] STANKOWSKI L F Jr, ROBERTS D J, CHEN H P, et al. Integration of Pig-a, micronucleus, chromosome Aberration and Comet assay endpoints in a 28-day rodent toxicity study with 4-nitroquinoline-1-oxide[J]. Environ Mol Mutagen, 2011, 52(9):738-747.; [30] DERTINGER S D, BRYCE S M, PHONETHEPSWATH S, et al. When pigs fly:immunomagnetic separation facilitates rapid determination of Pig-a mutant frequency by flow cytometric analysis[J]. Mutat Res, 2011, 721(2):163-170.; [31] DERTINGER S D, PHONETHEPSWATH S, WELLER P, et al. Interlaboratory Pig-a gene mutation assay trial:Studies of 1, 3-propane sultone with immunomagnetic enrichment of mutant erythrocytes[J]. Environ Mol Mutagen, 2011, 52(9):748-755.; [32] PU J, DENG Y Y, TAN X Y, et al. The in vivo Pig-a gene mutation assay is applied to study the genotoxicity of procarbazine hydrochloride in Sprague-Dawley rats[J]. Fundam Toxicol Sci, 2016, 3(4):167-175.; [33] KRüGER C T, HOFMANN M, HARTWIG A. The in vitro PIG-A gene mutation assay:mutagenicity testing via flow cytometry based on the glycosylphosphatidylinositol (GPI) status of TK6 cells[J]. Arch Toxicol, 2015, 89(12):2429-2443.; [34] KRüGER C T, FISCHER B M, ARMANT O, et al. The in vitro PIG-A gene mutation assay:glycosylphosphatidylinositol (GPI)-related genotype-to-phenotype relationship in TK6 cells[J]. Arch Toxicol, 2016, 90(7):1729-1736.; [35] DAVID R, TALBOT E, ALLEN B, et al. The development of an in vitro Pig-a assay in L5178Y cells[J]. Arch Toxicol, 2018, 92(4):1609-1623.; [36] REES B J, TATE M, LYNCH A M, et al. Development of anin vitro PIG-A gene mutation assay in human cells[J]. Mutagenesis, 2017:gew059.; [37] International Conference on Harmonization. Assessment and Control of DNA Reactive (Mutagenic) Impurities in Pharmaceuticals to Limit Potential Carcinogenic Risk[EB/OL]. (2017-07-21)[2018-02-03]. https://www.ema.europa.eu/documents/scientific-guideline/ich-guideline-m7r1-assessment-control-dna-reactive-mutagenic-impurities-pharmaceuticals-limit_en.pdf |
[1] | YANG Yu, HUANG Yali, LIN Fei, TANG Long. Acute toxicity and genotoxicity of antitumor serum thymic factor 9 peptide [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2022, 34(1): 57-61. |
[2] | PENG Changfeng, XIE Xing, KE Yuebin. DNA oxidation and methylation effects in nano-graphene oxide-exposed 16HBE cells [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2019, 31(6): 454-458,463. |
[3] | LI Ying, CHEN Xiaming, LI Hanrong, LUO Te. Genotoxicity of three kinds of electric mosquito repellents on plant root tip cells [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2019, 31(5): 401-405,411. |
[4] | . [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2019, 31(5): 406-411. |
[5] | LI Ruowan, ZHOU Changhui, HUANG Pengcheng, CHANG Yan. Establishment of an in vitro PIG-A gene mutation assay based on TK6 cells for genotoxicity tests [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2019, 31(3): 242-248. |
[6] | ZHAO Kangtao, WANG Qinghong, LIN Jian. Teratogenic investigation of a silicon adsorbent for cold turbidity of beer on SD rats [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2018, 30(5): 400-402,406. |
[7] | . [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2018, 30(4): 315-317,325. |
[8] | HUANG Pengcheng, ZHOU Changhui, LI Shenning, CHANG Yan. Establishment of detection method for histone γ-H2AX phosphorylation based on flow cytometry [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2017, 29(4): 284-288. |
[9] | YUAN Ye, CHEN Dandan, JING Shufang, YU Yongsheng, CHEN Jianheng, WU Chunqi, SHI Chang. Mutagenic effects of N-(n-butyl)-thiophosphorictriamide in somatic and germ cells of mice [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2016, 28(6): 432-437. |
[10] | XU Yu, ZHANG Xiaohong, BAN Yuanyuan, FENG Qin, ZHANG Xue, CHANG Xiling, GAO Qichao. The effect of Chlorpyrifos on the growth of Drosophila melanogaster [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2016, 28(6): 477-480. |
[11] | YANG Hong, WU Qiuyun, LAO Canshan, LI Mingyue, LI Wenchao. DNA-damage in RAW264.7 cells exposed to different sizes of silica nanoparticles [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2016, 28(4): 249-254. |
[12] | . [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2016, 28(3): 243-245,249. |
[13] | LU Yao, LIU Xinxia, XING Xiumei, ZHAO Zhiqiang, OU Xiaoyan, SU Xiaolin, SUN Yi, CHEN Jingli, SHEN Biling, JIANG Jun, HE Yun. DNA damage and telomere length changes in peripheral leukocytes from lead exposed workers [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2016, 28(3): 179-184. |
[14] | LIU Tiantian, SHEN Chunlin, LÜ Lulu, ZHANG Tianbao. Genotoxicity of PAMAM dendrimer (ethylenediamine core) generation 5.0 solution [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2015, 27(5): 378-382. |
[15] | WANG Ying, PU Jiang, QI Naisong, WEN Hairuo, WANG Xin, HU Yanping, SONG Jie, ZHANG Joe, WANG Xue. A high-throughput screening method and application of cell transformation assay in Bhas 42 cells [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2015, 27(4): 288-293. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||