Carcinogenesis, Teratogenesis & Mutagenesis ›› 2020, Vol. 32 ›› Issue (1): 67-71.doi: 10.3969/j.issn.1004-616x.2020.01.013
Previous Articles Next Articles
Received:
2019-10-21
Revised:
2019-12-01
Online:
2020-01-31
Published:
2020-02-05
CLC Number:
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] SIEGEL R L, MILLER K D, FEDEWA S A, et al. Colorectal cancer statistics, 2017[J]. CA:Cancer J Clin, 2017, 67(3):177-193. [2] FAKIH M G. Metastatic colorectal cancer:current state and future directions[J]. J Clin Oncol, 2015, 33(16):1809-1824. [3] AMADO R G, WOLF M, PEETERS M, et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer[J]. J Clin Oncol, 2008, 26(10):1626-1634. [4] ÅLGARS A, SUNDSTR-M J, LINTUNEN M, et al. EGFR gene copy number predicts response to anti-EGFR treatment in RAS wild type and RAS/BRAF/PIK3CA wild type metastatic colorectal cancer[J]. Int J Cancer, 2017, 140(4):922-929. [5] VOGEL C L, COBLEIGH M A, TRIPATHY D, et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer[J]. J Clin Oncol, 2002, 20(3):719-726. [6] BANG Y J, VAN CUTSEM E, FEYEREISLOVA A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA):a phase 3, open-label, randomised controlled trial[J]. Lancet, 2010, 376(9742):687-697. [7] MORONI M, VERONESE S, BENVENUTI S, et al. Gene copy number for epidermal growth factor receptor (EGFR) and clinical response to antiEGFR treatment in colorectal cancer:a cohort study[J]. Lancet Oncol, 2005, 6(5):279-286. [8] ÅLGARS A, SUNDSTR-M J, LINTUNEN M, et al. EGFR gene copy number predicts response to anti-EGFR treatment in RAS wild type and RAS/BRAF/PIK3CA wild type metastatic colorectal cancer[J]. Int J Cancer, 2017, 140(4):922-929. [9] JACOBS B, DE ROOCK W, PIESSEVAUX H, et al. Amphiregulin and epiregulin mRNA expression in primary tumors predicts outcome in metastatic colorectal cancer treated with cetuximab[J]. J Clin Oncol, 2009, 27(30):5068-5074. [10] JING C, JIN Y H, YOU Z, et al. Prognostic value of amphiregulin and epiregulin mRNA expression in metastatic colorectal cancer patients[J]. Oncotarget, 2016, 7(34):55890-55899. [11] DE ROOCK W, JONKER D J, DI NICOLANTONIO F, et al. Association of KRAS p.G13D mutation with outcome in patients with chemotherapy-refractory metastatic colorectal cancer treated with cetuximab[J]. JAMA, 2010, 304(16):1812-1820. [12] PEETERS M, DOUILLARD J Y, VAN CUTSEM E, et al. Mutant KRAS Codon 12 and 13 alleles in patients with metastatic colorectal cancer:assessment as prognostic and predictive biomarkers of response to panitumumab[J]. J Clin Oncol, 2013, 31(6):759-765. [13] CIARDIELLO F, LENZ H J, KOHNE C H, et al. Treatment outcome according to tumor RAS mutation status in CRYSTAL study patients with metastatic colorectal cancer (mCRC) randomized to FOLFIRI with/without cetuximab[J]. J Clin Oncol, 2014, 32(15_suppl):3506. [14] DOUILLARD J Y, OLINER K S, SIENA S, et al. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer[J]. N Engl J Med, 2013, 369(11):1023-1034. [15] GUEDES J G, VEIGA I, ROCHA P, et al. High resolution melting analysis of KRAS, BRAF and PIK3CA in KRAS exon 2 wild-type metastatic colorectal cancer[J]. BMC Cancer, 2013, 13:169. [16] LI Y P, TAKAHASHI M, STORK P J. Ras-mutant cancer cells display B-Raf binding to Ras that activates extracellular signal-regulated kinase and is inhibited by protein kinase A phosphorylation[J]. J Biol Chem, 2013, 288(38):27646-27657. [17] DE ROOCK W, CLAES B, BERNASCONI D, et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer:a retrospective consortium analysis[J]. Lancet Oncol, 2010, 11(8):753-762. [18] TAN X J, LAMBERT P F, RAPRAEGER A C, et al. Stress-induced EGFR trafficking:mechanisms, functions, and therapeutic implications[J]. Trends Cell Biol, 2016, 26(5):352-366. [19] ZHAO L, VOGT P K. Helical domain and kinase domain mutations in p110 of phosphatidylinositol 3-kinase induce gain of function by different mechanisms[J]. Proc Natl Acad Sci U S A, 2008, 105(7):2652-2657. [20] MAO C, YANG Z Y, HU X F, et al. PIK3CA exon 20 mutations as a potential biomarker for resistance to anti-EGFR monoclonal antibodies in KRAS wild-type metastatic colorectal cancer:a systematic review and meta-analysis[J]. Ann Oncol, 2012, 23(6):1518-1525. [21] MAO C, YANG Z Y, HU X F, et al. PIK3CA exon 20 mutations as a potential biomarker for resistance to anti-EGFR monoclonal antibodies in KRAS wild-type metastatic colorectal cancer:a systematic review and meta-analysis[J]. Ann Oncol, 2012, 23(6):1518-1525. [22] NAGATA Y, LAN K H, ZHOU X Y, et al. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients[J]. Cancer Cell, 2004, 6(2):117-127. [23] SARTORE-BIANCHI A, MARTINI M, MOLINARI F, et al. PIK3CA mutations in colorectal cancer are associated with clinical resistance to EGFR-targeted monoclonal antibodies[J]. Cancer Res, 2009, 69(5):1851-1857. [24] LOUPAKIS F, POLLINA L, STASI I, et al. PTEN expression and KRAS mutations on primary tumors and metastases in the prediction of benefit from cetuximab plus irinotecan for patients with metastatic colorectal cancer[J]. J Clin Oncol, 2009, 27(16):2622-2629. [25] LI Q, ZHANG D X, CHEN X Y, et al. Nuclear PKM2 contributes to gefitinib resistance via upregulation of STAT3 activation in colorectal cancer[J]. Sci Rep, 2015, 5:16082. [26] YAR SAGLAM A S, ALP E, ELMAZOGLU Z, et al. Treatment with cucurbitacin B alone and in combination with gefitinib induces cell cycle inhibition and apoptosis via EGFR and JAK/STAT pathway in human colorectal cancer cell lines[J]. Hum Exp Toxicol, 2016, 35(5):526-543. [27] BUCK E, EYZAGUIRRE A, BARR S, et al. Loss of homotypic cell adhesion by epithelial-mesenchymal transition or mutation limits sensitivity to epidermal growth factor receptor inhibition[J]. Mol Cancer Ther, 2007, 6(2):532-541. [28] VAN EMBURGH B O, SARTORE-BIANCHI A, DI NICOLANTONIO F, et al. Acquired resistance to EGFR-targeted therapies in colorectal cancer[J]. Mol Oncol, 2014, 8(6):1084-1094. [29] BOUCHAHDA M, KARABOUé A, SAFFROY R, et al. Acquired KRAS mutations during progression of colorectal cancer metastases:possible implications for therapy and prognosis[J]. Cancer Chemother Pharmacol, 2010, 66(3):605-609. [30] MISALE S, YAEGER R, HOBOR S, et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer[J]. Nature, 2012, 486(7404):532-536. [31] VIGNERI P G, TIRRò E, PENNISI M S, et al. The insulin/IGF system in colorectal cancer development and resistance to therapy[J]. Front Oncol, 2015, 5:230. [32] SCARTOZZI M, MANDOLESI A, GIAMPIERI R, et al. Insulin-Like growth factor 1 expression correlates with clinical outcome in K-RAS wild type colorectal cancer patients treated with cetuximab and irinotecan[J]. Int J Cancer, 2010, 127(8):1941-1947. [33] TROIANI T, MARTINELLI E, NAPOLITANO S, et al. Increased TGF-α as a mechanism of acquired resistance to the anti-EGFR inhibitor cetuximab through EGFR-MET interaction and activation of MET signaling in colon cancer cells[J]. Clin Cancer Res, 2013, 19(24):6751-6765. [34] IIDA M, BRAND T M, STARR M M, et al. Overcoming acquired resistance to cetuximab by dual targeting HER family receptors with antibody-based therapy[J]. Mol Cancer, 2014, 13:242. [35] MONTAGUT C, DALMASES A, BELLOSILLO B, et al. Identification of a mutation in the extracellular domain of the epidermal growth factor receptor conferring cetuximab resistance in colorectal cancer[J]. Nat Med, 2012, 18(2):221-223. [36] TOL J, KOOPMAN M, CATS A, et al. Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer[J]. N Engl J Med, 2009, 360(6):563-572. |
[1] | WANG Miao, WANG Quankai, LI Xinwei, MA Shunpeng, WUHAN Baolier, XU Jianning. m6A methylation of mRNAs in glycidyl methacrylate-induced malignant transformation of 16HBE cells [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2021, 33(6): 405-409. |
[2] | GAO Xiaobin, WU Xueliang, WANG Shengjie, SUN Guangyuan, WANG Wenjing, LIANG Feng, ZHAO Yifeng, LIU Zhenxian, ZHANG Yingchun. Expression of TRIM59 and its correlations with clinicopathological features in colorectal cancers [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2021, 33(6): 446-450. |
[3] | . [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2021, 33(6): 470-474. |
[4] | . [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2021, 33(6): 475-481. |
[5] | CUI Zhaoyang, LI Suna, JIANG Xuqian, WANG Yidan, HOU Liying. Activation of the TRAIL death receptor by apigenin for induction of apoptosis in the gastric cancer SGC-7901 cells [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2021, 33(1): 32-36. |
[6] | . [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2021, 33(1): 72-76. |
[7] | LI Jinglei, HOU Wei. ceRNA network-based stigmasterolintervention on lung squamous cell carcinoma [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2020, 32(6): 423-429. |
[8] | SHI Hailin, HE Tianji, LIU Feng, CAI Menghui, GE Bo. Prognostic value of TCGA-database mutation burden in muscle-invasive bladder cancers [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2020, 32(6): 430-437,443. |
[9] | . [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2020, 32(6): 477-480,484. |
[10] | . [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2020, 32(6): 485-489. |
[11] | . [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2020, 32(4): 317-320,324. |
[12] | LUAN Yiran, LIU Liyuan, JIAO Long, WANG Yueling, BAI Hanyu, ZOU Naiyi, MA Ming. Clinical significance of miR-429 and Bmi-1 mRNA expression in diffuse large B-cell lymphoma [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2020, 32(3): 177-181. |
[13] | GULZARIA·Aikula, TAN Yao, PALIDA·Apiziaji. Expression of long non-coding RNAs in esophageal squamous cell carcinoma of Kazak nationality in Xinjiang [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2020, 32(3): 194-197,202. |
[14] | SHU Zhixiong, WU Chuancheng, WU Xiaoli, LIU Baoying. Relationships between gastric cancer and SNPs of autophagy-related genes on the PI3K/Akt/mTOR pathway [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2020, 32(2): 118-125,131. |
[15] | MA Xiaobiao, ZHANG Qi, PAN Dingguo. Association between rs4143815 polymorphism in the B7-H1 gene and risk of colorectal cancer [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2019, 31(6): 440-443,448. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||