[1] FUNK L, SU K C, LY J, et al. The phenotypic landscape of essential human genes[J]. Cell, 2022, 185(24): 4634-4653. [2] TRINKLE-MULCAHY L, ANDERSEN J, LAM Y W, et al. Repo-Man recruits PP1 gamma to chromatin and is essential for cell viability[J]. J Cell Biol, 2006, 172(5): 679-692. [3] WALKER M G. Drug target discovery by gene expression analysis: cell cycle genes[J]. Curr Cancer Drug Targets, 2001, 1(1): 73-83. [4] QIAN J B, BEULLENS M, LESAGE B, et al. Aurora B defines its own chromosomal targeting by opposing the recruitment of the phosphatase scaffold Repo-Man[J]. Curr Biol, 2013, 23(12): 1136-1143. [5] QIAN J B, BEULLENS M, HUANG J, et al. Cdk1 orders mitotic events through coordination of a chromosome-associated phosphatase switch[J]. Nat Commun, 2015, 6: 10215. [6] NASA I, RUSIN S F, KETTENBACH A N, et al. Aurora B opposes PP1 function in mitosis by phosphorylating the conserved PP1-binding RVxF motif in PP1 regulatory proteins[J]. Sci Signal, 2018, 11(530): eaai8669. [7] RUCHAUD S, CARMENA M, EARNSHAW W C. Chromosomal passengers: conducting cell division[J]. Nat Rev Mol Cell Biol, 2007, 8(10): 798-812. [8] KSCHONSAK M, HAERING C H. Shaping mitotic chromosomes: from classical concepts to molecular mechanisms[J]. BioEssays, 2015, 37(7): 755-766. [9] ANTONIN W, NEUMANN H. Chromosome condensation and decondensation during mitosis[J]. Curr Opin Cell Biol, 2016, 40: 15-22. [10] BEEL A J, AZUBEL M, MATTE- P J, et al. Structure of mitotic chromosomes[J]. Mol Cell, 2021, 81(21): 4369-4376. [11] HIRANO T. Condensins: organizing and segregating the genome[J]. Curr Biol, 2005, 15(7): R265-R275. [12] VAGNARELLI P, HUDSON D F, RIBEIRO S A, et al. Condensin and Repo-Man-PP1 co-operate in the regulation of chromosome architecture during mitosis[J]. Nat Cell Biol, 2006, 8(10): 1133-1142. [13] WILKINS B J, RALL N A, OSTWAL Y, et al. A cascade of histone modifications induces chromatin condensation in mitosis[J]. Science, 2014, 343(6166): 77-80. [14] LV S, BU W J, JIAO H, et al. LSD1 is required for chromosome segregation during mitosis[J]. Eur J Cell Biol, 2010, 89(7): 557-563. [15] MONIER K, MOURADIAN S, SULLIVAN K F. DNA methylation promotes aurora-B-driven phosphorylation of histone H3 in chromosomal subdomains[J]. J Cell Sci, 2007, 120(Pt 1): 101-114. [16] PARK J A, KIM A J, KANG Y, et al. Deacetylation and methylation at histone H3 lysine 9(H3K9) coordinate chromosome condensation during cell cycle progression[J]. Mol Cells, 2011, 31(4): 343-349. [17] WANDKE C, KUTAY U. Enclosing chromatin: reassembly of the nucleus after open mitosis[J]. Cell, 2013, 152(6): 1222-1225. [18] DE MUNTER S, VAN DER HOEVEN G, BOLLEN M. RepoMan stimulates the chromosome-dependent pathway of microtubule assembly[J]. Cell Cycle, 2020, 19(22): 3029-3041. [19] VAGNARELLI P. Repo-man at the intersection of chromatin remodelling, DNA repair, nuclear envelope organization, and cancer progression[J]. Adv Exp Med Biol, 2014, 773: 401-414. [20] MORIUCHI T, HIROSE F. SUMOylation of RepoMan during late telophase regulates dephosphorylation of lamin A[J]. J Cell Sci, 2021, 134(17): jcs247171. [21] DE CASTRO I J, BUDZAK J, DI GIACINTO M L, et al. Repo-man/PP1 regulates heterochromatin formation in interphase[J]. Nat Commun, 2017, 8: 14048. [22] LIU D, VADER G, VROMANS M J M, et al. Sensing chromosome bi-orientation by spatial separation of aurora B kinase from kinetochore substrates[J]. Science, 2009, 323(5919): 1350-1353. [23] LAMPSON M A, CHEESEMAN I M. Sensing centromere tension: aurora B and the regulation of kinetochore function[J]. Trends Cell Biol, 2011, 21(3): 133-140. [24] TANAKA T U, RACHIDI N, JANKE C, et al. Evidence that the Ipl1-Sli15(Aurora kinase-INCENP) complex promotes chromosome bi-orientation by altering kinetochore-spindle pole connections[J]. Cell, 2002, 108(3): 317-329. [25] VADER G, MAIA A F, LENS S M. The chromosomal passenger complex and the spindle assembly checkpoint: kinetochore-microtubule error correction and beyond[J]. Cell Div, 2008, 3: 10. [26] KELLY A E, FUNABIKI H. Correcting aberrant kinetochore microtubule attachments: an aurora B-centric view[J]. Curr Opin Cell Biol, 2009, 21(1): 51-58. [27] HELENIUS J, BROUHARD G, KALAIDZIDIS Y, et al. The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends[J]. Nature, 2006, 441(7089): 115-119. [28] EMS-MCCLUNG S C, HAINLINE S G, DEVARE J, et al. Aurora B inhibits MCAK activity through a phosphoconformational switch that reduces microtubule association[J]. Curr Biol, 2013, 23(24): 2491-2499. [29] LAN W J, ZHANG X, KLINE-SMITH S L, et al. Aurora B phosphorylates centromeric MCAK and regulates its localization and microtubule depolymerization activity[J]. Curr Biol, 2004, 14(4): 273-286. [30] DELUCA K F, LENS S M A, DELUCA J G. Temporal changes in Hec1 phosphorylation control kinetochore-microtubule attachment stability during mitosis[J]. J Cell Sci, 2011, 124(Pt 4): 622-634. [31] KELLY A E, GHENOIU C, XUE J Z, et al. Survivin reads phosphorylated histone H3 threonine 3 to activate the mitotic kinase Aurora B[J]. Science, 2010, 330(6001): 235-239. [32] WANG F W, DAI J, DAUM J R, et al. Histone H3 thr-3 phosphorylation by haspin positions aurora B at centromeres in mitosis[J]. Science, 2010, 330(6001): 231-235. [33] YAMAGISHI Y, HONDA T, TANNO Y, et al. Two histone marks establish the inner centromere and chromosome bi-orientation[J]. Science, 2010, 330(6001): 239-243. [34] DAI J, SULTAN S, TAYLOR S S, et al. The kinase haspin is required for mitotic histone H3 Thr 3 phosphorylation and normal metaphase chromosome alignment[J]. Genes Dev, 2005, 19(4): 472-488. [35] QIAN J B, LESAGE B, BEULLENS M, et al. PP1/Repo-man dephosphorylates mitotic histone H3 at T3 and regulates chromosomal aurora B targeting[J]. Curr Biol, 2011, 21(9): 766-773. [36] ZHOU L L, TIAN X Y, ZHU C L, et al. Polo-like kinase-1 triggers histone phosphorylation by haspin in mitosis[J]. EMBO Rep, 2014, 15(3): 273-281. [37] MANZIONE M G, ROMBOUTS J, STEKLOV M, et al. Co-regulation of the antagonistic RepoMan: aurora-B pair in proliferating cells[J]. Mol Biol Cell, 2020, 31(6): 419-438. [38] SCHUMACHER B, POTHOF J, VIJG J, et al. The central role of DNA damage in the ageing process[J]. Nature, 2021, 592(7856): 695-703. [39] ZHOU B B, ELLEDGE S J. The DNA damage response: putting checkpoints in perspective[J]. Nature, 2000, 408(6811): 433-439. [40] HALAZONETIS T D, GORGOULIS V G, BARTEK J. An oncogene-induced DNA damage model for cancer development[J]. Science, 2008, 319(5868): 1352-1355. [41] MOISEEVA T N, YIN Y D, CALDERON M J, et al. An ATR and CHK1 kinase signaling mechanism that limits origin firing during unperturbed DNA replication[J]. Proc Natl Acad Sci U S A, 2019, 116(27): 13374-13383. [42] RAMOS F, VILLORIA M T, ALONSO-RODRíGUEZ E, et al. Role of protein phosphatases PP1, PP2A, PP4 and Cdc14 in the DNA damage response[J]. Cell Stress, 2019, 3(3): 70-85. [43] WONG R H F, CHANG I, HUDAK C S S, et al. A role of DNA-PK for the metabolic gene regulation in response to insulin[J]. Cell, 2009, 136(6): 1056-1072. [44] SCULLY R, PANDAY A, ELANGO R, et al. DNA double-strand break repair-pathway choice in somatic mammalian cells[J]. Nat Rev Mol Cell Biol, 2019, 20(11): 698-714. [45] PENG A M, LEWELLYN A L, SCHIEMANN W P, et al. Repo-man controls a protein phosphatase 1-dependent threshold for DNA damage checkpoint activation[J]. Curr Biol, 2010, 20(5): 387-396. [46] O’CONNOR M J. Targeting the DNA damage response in cancer[J]. Mol Cell, 2015, 60(4): 547-560. [47] XU B, CHEN H, XU Z P, et al. CDCA2 promotes tumorigenesis and induces radioresistance in oesophageal squamous cell carcinoma cells[J]. Mol Med Rep, 2021, 24(1): 530. [48] UCHIDA F, UZAWA K, KASAMATSU A, et al. Overexpression of CDCA2 in human squamous cell carcinoma: correlation with prevention of G1 phase arrest and apoptosis[J]. PLoS One, 2013, 8(2): e56381. [49] RYU B, KIM D S, DELUCA A M, et al. Comprehensive expression profiling of tumor cell lines identifies molecular signatures of melanoma progression[J]. PLoS One, 2007, 2(7): e594. [50] LI J Z, CHEN Y Q, WANG X D, et al. CDCA2 triggers in vivo and in vitro proliferation of hepatocellular carcinoma by activating the AKT/CCND1 signaling[J]. J BUON, 2021, 26(3): 882-888. [51] FENG Y F, QIAN W W, ZHANG Y, et al. CDCA2 promotes the proliferation of colorectal cancer cells by activating the AKT/CCND1 pathway in vitro and in vivo[J]. BMC Cancer, 2019, 19(1): 576. [52] ZHANG Y X, CHENG Y D, ZHANG Z X, et al. CDCA2 inhibits apoptosis and promotes cell proliferation in prostate cancer and is directly regulated by HIF-1α pathway[J]. Front Oncol, 2020, 10: 725. [53] JIN W H, ZHOU A T, CHEN J J, et al. CDCA2 promotes proliferation and migration of melanoma by upregulating CCAD1[J]. Eur Rev Med Pharmacol Sci, 2020, 24(12): 6858-6863. [54] LAGARDE P, PRZYBYL J, BRULARD C, et al. Chromosome instability accounts for reverse metastatic outcomes of pediatric and adult synovial sarcomas[J]. J Clin Oncol, 2013, 31(5): 608-615. [55] YU Z J, ZHANG Y, SHAO S, et al. Identification of CDCA2 as a diagnostic and prognostic marker for hepatocellular carcinoma[J]. Front Oncol, 2021, 11: 755814. [56] WANG Y K, YANG Y F, GAO H L, et al. Comprehensive analysis of CDCAs methylation and immune infiltrates in hepatocellular carcinoma[J]. Front Oncol, 2021, 10: 566183. |