Carcinogenesis, Teratogenesis & Mutagenesis ›› 2024, Vol. 36 ›› Issue (4): 325-327,333.doi: 10.3969/j.issn.1004-616x.2024.04.014
Received:
2023-09-17
Revised:
2024-05-04
Published:
2024-08-06
CLC Number:
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] FEI F, ZHANG D, YANG Z D, et al. The number of polyploid giant cancer cells and epithelial-mesenchymal transition-related proteins are associated with invasion and metastasis in human breast cancer[J]. J Exp Clin Cancer Res, 2015, 34: 158. [2] ZHANG S W, MERCADO-URIBE I, LIU J S. Generation of erythroid cells from fibroblasts and cancer cells in vitro and in vivo[J]. Cancer Lett, 2013, 333(2): 205-212. [3] ZHANG S, MERCADO-URIBE I, XING Z, et al. Generation of cancer stem-like cells through the formation of polyploid giant cancer cells[J]. Oncogene, 2014, 33(1): 116-128. [4] LOPEZ-SÁNCHEZ L M, JIMENEZ C, VALVERDE A, et al. CoCl2, a mimic of hypoxia, induces formation of polyploid giant cells with stem characteristics in colon cancer[J]. PLoS One, 2014, 9(6): e99143. [5] SONG Y W, ZHAO Y C, DENG Z, et al. Stress-induced polyploid giant cancer cells: unique way of formation and non-negligible characteristics [J]. Front Oncol, 2021, 11: 724781. [6] ZHANG H, MA H, YANG X H, et al. Cell fusion-related proteins and signaling pathways, and their roles in the development and progression of cancer[J]. Front Cell Dev Biol, 2021, 9: 809668. [7] NIU N, ZHANG J, ZHANG N, et al. Linking genomic reorganization to tumor initiation via the giant cell cycle[J]. Oncogenesis, 2016, 5(12): e281. [8] LIU K, ZHENG M Y, ZHAO Q, et al. Different p53 genotypes regulating different phosphorylation sites and subcellular location of CDC25C associated with the formation of polyploid giant cancer cells[J]. J Exp Clin Cancer Res, 2020, 39(1): 83. [9] ADIBI R, MOEIN S, GHEISARI Y. Cisplatin-resistant ovarian cancer cells reveal a polyploid phenotype with remarkable activation of nuclear processes[J]. Adv Biomed Res, 2023, 12: 77. [10] ZHANG S W, MERCADO-URIBE I, LIU J S. Tumor stroma and differentiated cancer cells can be originated directly from polyploid giant cancer cells induced by paclitaxel[J]. Int J Cancer, 2014, 134(3): 508-518. [11] LI Z G, ZHENG M Y, ZHANG H, et al. Arsenic trioxide promotes tumor progression by inducing the formation of PGCCs and embryonic hemoglobin in colon cancer cells[J]. Front Oncol, 2021, 11: 720814. [12] WANG X L, ZHENG M Y, FEI F, et al. EMT-related protein expression in polyploid giant cancer cells and their daughter cells with different passages after triptolide treatment[J]. Med Oncol, 2019, 36(9): 82. [13] FEI F, ZHANG M Q, LI B, et al. Formation of polyploid giant cancer cells involves in the prognostic value of neoadjuvant chemoradiation in locally advanced rectal cancer[J]. J Oncol, 2019, 2019: 2316436. [14] ARUN R P, SIVANESAN D, PATRA B, et al. Simulated microgravity increases polyploid giant cancer cells and nuclear localization of YAP [J]. Sci Rep, 2019, 9(1): 10684. [15] TAN Z H, CHAN Y J A, CHUA Y J K, et al. Environmental stresses induce karyotypic instability in colorectal cancer cells[J]. Mol Biol Cell, 2019, 30(1): 42-55. [16] XIA T, JI Y, LU Y N, et al. Autophagy promotes recurrence of nasopharyngeal carcinoma via inducing the formation of dormant polyploid giant cancer cells[J]. Chin J Otorhinolaryngol Head Neck Surg, 2022, 57(9): 1102-1109. [17] SUNDARAM M, GUERNSEY D L, RAJARAMAN M M, et al. Neosis: a novel type of cell division in cancer[J]. Cancer Biol Ther, 2004, 3(2): 207-218. [18] RAJARAMAN R, GUERNSEY D L, RAJARAMAN M M, et al. Stem cells, senescence, neosis and self-renewal in cancer[J]. Cancer Cell Int, 2006, 6: 25. [19] ZHANG L, DING P, LV H C, et al. Number of polyploid giant cancer cells and expression of EZH2 are associated with VM formation and tumor grade in human ovarian tumor[J]. Biomed Res Int, 2014, 2014: 903542. [20] OGDEN A, RIDA P C, KNUDSEN B S, et al. Docetaxel-induced polyploidization may underlie chemoresistance and disease relapse[J]. Cancer Lett, 2015, 367(2): 89-92. [21] DIANAT-MOGHADAM H, HEIDARIFARD M, JAHANBANESFAHLAN R, et al. Cancer stem cells-emanated therapy resistance: Implications for liposomal drug delivery systems[J]. J Control Release, 2018, 288: 62-83. [22] ZHANG S W, MERCADO-URIBE I, HANASH S, et al. iTRAQ-based proteomic analysis of polyploid giant cancer cells and budding progeny cells reveals several distinct pathways for ovarian cancer development [J]. PLoS One, 2013, 8(11): e80120. [23] ZHANG S W, MERCADO-URIBE I, SOOD A, et al. Coevolution of neoplastic epithelial cells and multilineage stroma via polyploid giant cells during immortalization and transformation of Mullerian epithelial cells[J]. Genes Cancer, 2016, 7(3/4): 60-72. [24] THURA M, YE Z, AL-AIDAROOS A Q, et al. PRL3 induces polypoid giant cancer cells eliminated by PRL3-zumab to reduce tumor relapse [J]. Commun Biol, 2021, 4(1): 923. [25] YOU B, XIA T, GU M, et al. AMPK-mTOR-mediated activation of autophagy promotes formation of dormant polyploid giant cancer cells[J]. Cancer Res, 2022, 82(5): 846-858. [26] RAJARAMAN R, RAJARAMAN M M, RAJARAMAN S R, et al. Neosis: a paradigm of self-renewal in cancer[J]. Cell Biol Int, 2005, 29(12): 1084-1097. [27] WHITE-GILBERTSON S, LU P, NORRIS J S, et al. Genetic and pharmacological inhibition of acid ceramidase prevents asymmetric cell division by neosis[J]. J Lipid Res, 2019, 60(7): 1225-1235. [28] ZHANG X D, YAO J, LI X R, et al. Targeting polyploid giant cancer cells potentiates a therapeutic response and overcomes resistance to PARP inhibitors in ovarian cancer[J]. Sci Adv, 2023, 9(29): eadf7195. [29] HARTMAN Z C, POAGE G M, DEN HOLLANDER P, et al. Growth of triple-negative breast cancer cells relies upon coordinate autocrine expression of the proinflammatory cytokines IL-6 and IL-8[J]. Cancer Res, 2013, 73(11): 3470-3480. [30] NIU N, YAO J, BAST R C, et al. IL-6 promotes drug resistance through formation of polyploid giant cancer cells and stromal fibroblast reprogramming[J]. Oncogenesis, 2021, 10(9): 65. [31] ZHAO S, XING S N, WANG L L, et al. IL-1β is involved in docetaxel chemoresistance by regulating the formation of polyploid giant cancer cells in non-small cell lung cancer[J]. Sci Rep, 2023, 13(1): 12763. [32] DONOVAN P, CATO K, LEGAIE R, et al. Hyperdiploid tumor cells increase phenotypic heterogeneity within Glioblastoma tumors[J]. Mol Biosyst, 2014, 10(4): 741-758. [33] LIU L L, LONG Z J, WANG L X, et al. Inhibition of mTOR pathway sensitizes acute myeloid leukemia cells to aurora inhibitors by suppression of glycolytic metabolism[J]. Mol Cancer Res, 2013, 11(11): 1326-1336. [34] SHARMA S, YAO H P, ZHOU Y Q, et al. Prevention of BMS- 777607-induced polyploidy/senescence by mTOR inhibitor AZD8055 sensitizes breast cancer cells to cytotoxic chemotherapeutics[J]. Mol Oncol, 2014, 8(3): 469-482. [35] ADIBI R, MOEIN S, GHEISARI Y. Zoledronic acid targets chemoresistant polyploid giant cancer cells[J]. Sci Rep, 2023, 13(1): 419. [36] ZHOU W H, XU J, GELSTON E, et al. Inhibition of Bcl-xL overcomes polyploidy resistance and leads to apoptotic cell death in acute myeloid leukemia cells[J]. Oncotarget, 2015, 6(25): 21557-21571. [37] LISSA D, SENOVILLA L, RELLO-VARONA S, et al. Resveratrol and aspirin eliminate tetraploid cells for anticancer chemoprevention[J]. Proc Natl Acad Sci U S A, 2014, 111(8): 3020-3025. [38] MOSIENIAK G, SLIWINSKA M A, ALSTER O, et al. Polyploidy formation in doxorubicin-treated cancer cells can favor escape from senescence[J]. Neoplasia, 2015, 17(12): 882-893. |
[1] | ZHANG Kaitai. Aging and malignant tumors—the neglected immunosenescence [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2024, 36(3): 169-171. |
[2] | FU Yongqing, XU Sanhui, ZHAO Yan, WANG Lili. Relationships between SPP1, DEC1, C1QTNF6 and clinicopathologic outcomes of oral squamous cell carcinomas [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2024, 36(2): 107-111,117. |
[3] | LIU Ruixue, LI Desheng, ZHANG Liwei. Characteristics of serum lipidomics among Kazakhs with esophageal squamous cell carcinomas based on the UPLC-MS/MS method [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2024, 36(1): 21-28,34. |
[4] | WANG Quankai, JIN Huiping, LI Xinwei, CUI Xufang, GU Yiting, WUHAN Baolier, KANG Tongying, XU Jianning. ALDH3A1 activates GMA-induced malignant transformation of epithelial mesenchymal transition in 16HBE cells via the IL-6/STAT3 signalling pathway [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2023, 35(6): 405-411. |
[5] | ZHU Wenbiao, QIU bo, XIE Shoucheng, XIAO Huanqin, LIU Gaomin. Expression and clinical significance of transmembrane protein 79 in hepatocellular carcinoma [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2023, 35(6): 426-430. |
[6] | XU Jinhua, LI Jingjing, WU Guofeng, REN Yajun, WANG Xue, ZHANG Qianyun. Correlation and prognostic value of serum miR-146a with TNF-α and Treg in patients with non-small cell lung cancer [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2023, 35(6): 462-466. |
[7] | YANG Shangying, HUANG Mingxiang, XU Dexin, LIU Jiafu, CHEN Xinfu. Expression of DNAJB4 and association with immune infiltration and prognosis in non-small cell lung cancer [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2023, 35(6): 467-472. |
[8] | . [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2023, 35(6): 473-476. |
[9] | . [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2023, 35(6): 485-488. |
[10] | ZHANG Qi, WU Jing, ZHANG Chenlu. The biological function and mechanism of ribonucleotide reductase subunit M2 in medulloblastoma [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2023, 35(4): 279-284,291. |
[11] | ZHUANG Xibing, YUAN Sujuan, ZHANG Qi, LU Minghe, CHENG Yunfeng, QIAO Tiankui. Antitumor effects of heparanase silencing plus nadroparin and the mechanisms in lung cancer cells [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2022, 34(6): 413-420. |
[12] | ZHANG Junjun, LIANG Leping. Effect of PTEN C-tail on migration and proliferation of nasopharyngeal carcinoma cells [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2022, 34(6): 434-438. |
[13] | WU Bao, BAI Yuqin, LI Dandan, YANG Zhanmin, KONG Fanlong. Expression of HIF-1α, VEGF, Ki67 and serum proteins in large-cell lung cancer cell line xenografts and their relationship with numbers of functional blood vessels [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2022, 34(6): 439-444. |
[14] | . [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2022, 34(5): 400-403. |
[15] | . [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2022, 34(5): 404-407. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||