[1] 周琦, 吴小华, 刘继红, 等. 宫颈癌诊断与治疗指南(第四版)[J]. 中国实用妇科与产科杂志, 2018, 34(6): 613-622. [2] SOHN A, MILLER D, RIBEIRO E, et al. A deep learning model to triage and predict adenocarcinoma on pancreas cytology whole slide imaging[J]. Sci Rep, 2023, 13(1): 16517. [3] DOV D, ELLIOTT RANGE D, COHEN J, et al. Deep-learning-based screening and ancillary testing for thyroid cytopathology[J]. Am J Pathol, 2023, 193(9): 1185-1194. [4] WILBUR D C, BLACK-SCHAFFER W S, LUFF R D, et al. The becton Dickinson FocalPoint GS imaging system: clinical trials demonstrate significantly improved sensitivity for the detection of important cervical lesions[J]. Am J Clin Pathol, 2009, 132(5): 767-775. [5] ZHANG L, LE-LU, NOGUES I, et al. DeepPap: deep convolutional networks for cervical cell classification[J]. IEEE J Biomed Health Inform, 2017, 21(6): 1633-1643. [6] MARTIN V, KIM T H, KWON M, et al. A more comprehensive cervical cell classification using convolutional neural network[J]. J Am Soc Cytopathol, 2018, 7(5): S66. [7] BAO H L, SUN X R, ZHANG Y, et al. The artificial intelligence-assisted cytology diagnostic system in large-scale cervical cancer screening: a population-based cohort study of 0.7 million women[J]. Cancer Med, 2020, 9(18): 6896-6906. [8] 郭晓, 刘颖, 王蕊, 等. 人工智能辅助系统在宫颈病变细胞学诊断中的应用效果研究[J]. 癌变·畸变·突变, 2022, 34(5): 361-365. [9] 陈洁, 李文生, 张巍. 人工智能辅助系统在宫颈液基细胞学分析中的应用价值研究[J]. 现代检验医学杂志, 2023, 38(5): 155-159. [10] 胡爱侠, 朱琳, 贺慧, 等. 人工智能辅助分析技术在子宫颈细胞癌前病变筛查中的应用价值[J]. 临床与实验病理学杂志, 2022, 38(1): 27-30. [11] LIANG Y X, PAN C L, SUN W X, et al. Global context-aware cervical cell detection with soft scale anchor matching[J]. Comput Methods Programs Biomed, 2021, 204: 106061. [12] LEE Y, LEE C, PARK I A, et al. Cytomorphological features of hyperchromatic crowded groups in liquid-based cervicovaginal cytology: a single institutional experience[J]. J Pathol Transl Med, 2019, 53(6): 393-398. [13] 《宫颈液基细胞学人工智能辅助诊断数据集标注规范与质量控制专家共识》编写组, 何淑蓉, 罗琳, 等. 宫颈液基细胞学人工智能辅助诊断数据集标注规范与质量控制专家共识(2022版)[J]. 中华病理学杂志, 2022, 51(12): 1205-1209. |