[1] HAN B F, ZHENG R S, ZENG H M, et al. Cancer incidence and mortality in China, 2022[J]. J Natl Cancer Cent, 2024, 4(1): 47-53. [2] RICHARDSON D L, ESKANDER R N, O’MALLEY D M. Advances in ovarian cancer care and unmet treatment needs for patients with platinum resistance: a narrative review[J]. JAMA Oncol, 2023, 9(6): 851-859. [3] WANG L, WANG X, ZHU X P, et al. Drug resistance in ovarian cancer: from mechanism to clinical trial[J]. Mol Cancer, 2024, 23(1): 66. [4] HUANG W J, HICKSON L J, EIRIN A, et al. Cellular senescence: the good, the bad and the unknown[J]. Nat Rev Nephrol, 2022, 18(10): 611-627. [5] WANG B S, HAN J, ELISSEEFF J H, et al. The senescence-associated secretory phenotype and its physiological and pathological implications[J]. Nat Rev Mol Cell Biol, 2024, 25(12): 958-978. [6] SALEH T, BLOUKH S, HASAN M, et al. Therapy-induced senescence as a component of tumor biology: Evidence from clinical cancer[J]. Biochim Biophys Acta Rev Cancer, 2023, 1878(6): 188994. [7] WANG Z H, LIU H O, XU C J. Cellular senescence in the treatment of ovarian cancer[J]. Int J Gynecol Cancer, 2018, 28(5): 895-902. [8] VEENSTRA J P, BITTENCOURT L F F, AIRD K M. The senescence-associated secretory phenotype in ovarian cancer dissemination[J]. Am J Physiol Cell Physiol, 2022, 323(1): C125-C132. [9] WANG L, XIONG B, LU W, et al. Senolytic drugs dasatinib and quercetin combined with Carboplatin or Olaparib reduced the peritoneal and adipose tissue metastasis of ovarian cancer[J]. Biomed Pharmacother, 2024, 174: 116474. [10] 李伟. 顺铂诱导肿瘤细胞衰老相关新基因的筛选及功能鉴定[D]. 武汉: 华中科技大学, 2009. [11] MEJIA PE-A C, SKIPPER T A, HSU J, et al. Metronomic and single high-dose paclitaxel treatments produce distinct heterogenous chemoresistant cancer cell populations[J]. Sci Rep, 2023, 13(1): 19232. [12] SCHMITT C A, WANG B S, DEMARIA M. Senescence and cancer - role and therapeutic opportunities[J]. Nat Rev Clin Oncol, 2022, 19(10): 619-636. [13] SCHMITT C A, FRIDMAN J S, YANG M, et al. A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy[J]. Cell, 2002, 109(3): 335-346. [14] PAFFENHOLZ S V, SALVAGNO C, HO Y J, et al. Senescence induction dictates response to chemo- and immunotherapy in preclinical models of ovarian cancer[J]. Proc Natl Acad Sci USA, 2022, 119(5): e2117754119. [15] SUN H Z, WANG H S, WANG X, et al. Aurora-A/SOX8/FOXK1 signaling axis promotes chemoresistance via suppression of cell senescence and induction of glucose metabolism in ovarian cancer organoids and cells[J]. Theranostics, 2020, 10(15): 6928-6945. [16] NAKAYAMA K, RAHMAN M, RAHMAN M T, et al. Nucleus accumbens-1/GADD45GIP1 axis mediates cisplatin resistance through cellular senescence in ovarian cancer[J]. Oncol Lett, 2017, 13(6): 4713-4719. [17] D’ANTONA L, DATTILO V, CATALOGNA G, et al. In preclinical model of ovarian cancer, the SGK1 inhibitor SI113 counteracts the development of paclitaxel resistance and restores drug sensitivity[J]. Transl Oncol, 2019, 12(8): 1045-1055. [18] 周丹. miR-429/ZEB1轴调控铂类耐药卵巢癌细胞敏感性的机制研究[D]. 南宁: 广西医科大学, 2021. [19] SUN Y, JIN L, LIU J H, et al. Interfering EZH2 expression reverses the cisplatin resistance in human ovarian cancer by inhibiting autophagy[J]. Cancer Biother Radiopharm, 2016, 31(7): 246-252. [20] DEMARIA M, O’LEARY M N, CHANG J H, et al. Cellular senescence promotes adverse effects of chemotherapy and cancer relapse[J]. Cancer Discov, 2017, 7(2): 165-176. [21] SANTANA-RIVERA Y, RABELO-FERNáNDEZ R J, QUI-ONES-DíAZ B I, et al. Erratum: Reduced expression of enolase-1 correlates with high intracellular glucose levels and increased senescence in cisplatin-resistant ovarian cancer cells[J]. Am J Transl Res, 2021, 13(11): 13219. [22] ÖZEŞ A R, MILLER D F, ÖZEŞ O N, et al. NF-κB-HOTAIR axis links DNA damage response, chemoresistance and cellular senescence in ovarian cancer[J]. Oncogene, 2016, 35(41): 5350-5361. [23] WU H, SUN C G, CAO W Y, et al. Blockade of the lncRNA-PART1-PHB2 axis confers resistance to PARP inhibitor and promotes cellular senescence in ovarian cancer[J]. Cancer Lett, 2024, 602: 217192. [24] WEINER-GORZEL K, DEMPSEY E, MILEWSKA M, et al. Overexpression of the microRNA miR-433 promotes resistance to paclitaxel through the induction of cellular senescence in ovarian cancer cells[J]. Cancer Med, 2015, 4(5): 745-758. [25] RABELO-FERNáNDEZ R J, SANTIAGO-SáNCHEZ G S, SHARMA R K, et al. Reduced RBPMS levels promote cell proliferation and decrease cisplatin sensitivity in ovarian cancer cells[J]. Int J Mol Sci, 2022, 23(1): 535. [26] MILANOVIC M, FAN D N Y, BELENKI D, et al. Senescence-associated reprogramming promotes cancer stemness[J]. Nature, 2018, 553(7686): 96-100. [27] XIONG J, FU Y Y, HUANG J Z, et al. Metabolic and senescence characteristics associated with the immune microenvironment in ovarian cancer[J]. Front Endocrinol (Lausanne), 2023, 14: 1265525. [28] YE X, WEINBERG R A. Epithelial-mesenchymal plasticity: a central regulator of cancer progression[J]. Trends Cell Biol, 2015, 25(11): 675-686. [29] VICTORELLI S, SALMONOWICZ H, CHAPMAN J, et al. Apoptotic stress causes mtDNA release during senescence and drives the SASP[J]. Nature, 2023, 622(7983): 627-636. [30] NACARELLI T, FUKUMOTO T, ZUNDELL J A, et al. NAMPT inhibition suppresses cancer stem-like cells associated with therapy-induced senescence in ovarian cancer[J]. Cancer Res, 2020, 80(4): 890-900. [31] WANG Y N, ZONG X Y, MITRA S, et al. IL-6 mediates platinum-induced enrichment of ovarian cancer stem cells[J]. JCI Insight, 2018, 3(23): e122360. [32] NIU N, YAO J, BAST R C, et al. IL-6 promotes drug resistance through formation of polyploid giant cancer cells and stromal fibroblast reprogramming[J]. Oncogenesis, 2021, 10(9): 65. [33] SHEN C C, KANG Y H, ZHAO M, et al. WNT16B from ovarian fibroblasts induces differentiation of regulatory T cells through β-catenin signal in dendritic cells[J]. Int J Mol Sci, 2014, 15(7): 12928-12939. [34] áLVAREZ-ABRIL B, GARCíA-MARTíNEZ E, GALLUZZI L. Platinum-based chemotherapy inflames the ovarian carcinoma microenvironment through cellular senescence[J]. Oncoimmunology, 2022, 11(1): 2052411. [35] THAPA B V, BANERJEE M, GLIMM T, et al. The senescent mesothelial matrix accentuates colonization by ovarian cancer cells[J]. Cell Mol Life Sci, 2023, 81(1): 2. [36] MIKU-A-PIETRASIK J, URUSKI P, SOSI-SKA P, et al. Senescent peritoneal mesothelium creates a niche for ovarian cancer metastases[J]. Cell Death Dis, 2016, 7(12): e2565. [37] RUHLAND M K, LOZA A J, CAPIETTO A H, et al. Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis[J]. Nat Commun, 2016, 7: 11762. [38] FLEURY H, MALAQUIN N, TU V, et al. Exploiting interconnected synthetic lethal interactions between PARP inhibition and cancer cell reversible senescence[J]. Nat Commun, 2019, 10: 2556. [39] 彭碧. EIF4G1在卵巢癌中的表达及对卵巢癌细胞增殖和自噬的影响[D]. 长沙: 中南大学, 2023. [40] XIONG J Q, DONG L, LV Q Y, et al. Targeting senescence-associated secretory phenotypes to remodel the tumour microenvironment and modulate tumour outcomes[J]. Clin Transl Med, 2024, 14(9): e1772. [41] PUJADE-LAURAINE E, HILPERT F, WEBER B, et al. Bevacizumab combined with chemotherapy for platinum-resistant recurrent ovarian cancer: The AURELIA open-label randomized phase III trial[J]. J Clin Oncol, 2014, 32(13): 1302-1308. [42] MURALIKRISHNAN V, FANG F, GIVEN T C, et al. A novel ALDH1A1 inhibitor blocks platinum-induced senescence and stemness in ovarian cancer[J]. Cancers (Basel), 2022, 14(14): 3437. [43] ZHANG X D, YAO J, LI X R, et al. Targeting polyploid giant cancer cells potentiates a therapeutic response and overcomes resistance to PARP inhibitors in ovarian cancer[J]. Sci Adv, 2023, 9(29): eadf7195. [44] CHEN W J, ZHUANG X J, CHEN Y Y, et al. Discovery of potent and selective CDK2 inhibitors with high safety and favorable bioavailability for the treatment of cancer[J]. Eur J Med Chem, 2025, 290: 117503. [45] 柯小平, 李莉, 李经维, 等. PTEN通过靶向P21诱导卵巢癌细胞衰老的机制研究[J]. 中国免疫学杂志, 2021, 37(12): 1461-1467. |