[1] Lord CJ, Ashworth A. The DNA damage response and cancer therapy[J]. Nature, 2012, 481(7381):287-294.[2] Sousa FG, Matuo R, Soares DG, et al. PARPs and the DNA damage response[J]. Carcinogenesis, 2012, 33(8):1433-1440.[3] Woodbine L, Gennery AR, Jeggo PA. The clinical impact of deficiency in DNA non-homologous end-joining[J]. DNA Repair:Amst, 2014, 16:84-96.[4] Ciccia A, Elledge SJ. The DNA damage response:making it safe to play with knives[J]. Mol Cell, 2010, 40(2):179-204.[5] Lagerwerf S, Vrouwe MG, Overmeer RM, et al. DNA damage response and transcription[J]. DNA Repair:Amst, 2011, 10(7): 743-750.[6] Fikrova P, Stetina R, Hrnciarik M, et al. DNA crosslinks, DNA damage and repair in peripheral blood lymphocytes of non-small cell lung cancer patients treated with platinum derivatives[J]. Oncol Rep, 2014, 31(1):391-396.[7] Jiricny J. The multifaceted mismatch-repair system[J]. Nat Rev Mol Cell Biol, 2006, 7(5):335-346.[8] Marinus MG. DNA mismatch repair[J]. Ecosal Plus, 2012, doi:10.1128/ecosalplus.7.2.5.[9] Caldecott KW. Single-strand break repair and genetic disease[J]. Nat Rev Genet, 2008, 9(8):619-631.[10] Rich T, Allen RL, Wyllie AH. Defying death after DNA damage[J]. Nature, 2000, 407(6805):777-783.[11] Davis AJ, Chen DJ. DNA double strand break repair via non-homologous end-joining[J]. Transl Cancer Res, 2013, 2(3):130-143.[12] Schipler A, Iliakis G. DNA double-strand-break complexity levels and their possible contributions to the probability for error-prone processing and repair pathway choice[J]. Nucleic Acids Res, 2013, 41(16): 7589-7605.[13] Shrivastav M, De Haro LP, Nickoloff JA. Regulation of DNA double-strand break repair pathway choice[J]. Cell Res, 2008, 18(1):134-147.[14] Weterings E, Chen DJ. The endless tale of non-homologous end-joining[J]. Cell Res, 2008, 18(1):114-124.[15] Shibata A, Moiani D, Arvai AS, et al. DNA double-strand break repair pathway choice is directed by distinct MRE11 nuclease activities [J]. Mol Cell, 2014, 53(1):7-18.[16] Hu S, Qu Y, Xu X, et al. Nuclear survivin and its relationship to DNA damage repair genes in non-small cell lung cancer investigated using tissue array[J]. PLoS One, 2013, 8(9):e74161.[17] Price BD, D'Andrea AD. Chromatin remodeling at DNA double-strand breaks[J]. Cell, 2013, 152(6):1344-1354.[18] Reinhardt HC, Yaffe MB. Phospho-Ser/Thr-binding domains: navigating the cell cycle and DNA damage response[J]. Nat Rev Mol Cell Biol, 2013, 14(9):563-580.[19] Krejci L, Altmannova V, Spirek M, et al. Homologous recombination and its regulation[J]. Nucleic Acids Res, 2012, 40(13):5795-5818.[20] Daley JM, Gaines WA, Kwon Y, et al. Regulation of DNA pairing in homologous recombination[J]. Cold Spring Harb Perspect Biol, 2014, 6(11):a017954.[21] Burma S, Chen BP, Chen DJ. Role of non-homologous end joining(NHEJ) in maintaining genomic integrity[J]. DNA Repair:Amst, 2006, 5(9-10):1042-1048.[22] Alshareeda AT, Negm OH, Albarakati N, et al. Clinicopathological significance of KU70/KU80, a key DNA damage repair protein in breast cancer[J]. Breast Cancer Res Treat, 2013, 139(2):301-310.[23] Uematsu N, Weterings E, Yano K, et al. Autophosphorylation of DNA-PKCS regulates its dynamics at DNA double-strand breaks[J]. J Cell Biol, 2007, 177(2):219-229.[24] Jeggo PA, Geuting V, Lobrich M. The role of homologous recombination in radiation-induced double-strand break repair[J]. Radiother Oncol, 2011, 101(1):7-12.[25] Davis AJ, Chen BP, Chen DJ. DNA-PK:a dynamic enzyme in a versatile DSB repair pathway[J]. DNA Repair:Amst, 2014, 17:21-29.[26] Przybylowska K, Kabzinski J, Sygut A, et al. An association selected polymorphisms of XRCC1, OGG1 and MUTYH gene and the level of efficiency oxidative DNA damage repair with a risk of colorectal cancer [J]. Mutat Res, 2013, 745-746:6-15.[27] Betermier M, Bertrand P, Lopez BS. Is non-homologous end-joining really an inherently error-prone process?[J]. PLoS Genet, 2014, 10(1):e1004086.[28] Kass EM, Jasin M. Collaboration and competition between DNA double-strand break repair pathways[J]. FEBS Lett, 2010, 584(17): 3703-3708.[29] Chapman JR, Taylor MR, Boulton SJ. Playing the end game:DNA double-strand break repair pathway choice[J]. Mol Cell, 2012, 47(4): 497-510.[30] Siede W, Friedl AA, Dianova I, et al. The Saccharomyces cerevisiae Ku autoantigen homologue affects radiosensitivity only in the absence of homologous recombination[J]. Genetics, 1996, 142(1):91-102.[31] Gupta A, Hunt CR, Chakraborty S, et al. Role of 53BP1 in the regulation of DNA double-strand break repair pathway choice[J]. Radiat Res, 2014, 181(1):1-8.[32] Yamazoe M, Sonoda E, Hochegger H, et al. Reverse genetic studies of the DNA damage response in the chicken B lymphocyte line DT40[J]. DNA Repair:Amst, 2004, 3(8/9):1175-1185.[33] Okashita N, Kumaki Y, Ebi K, et al. PRDM14 promotes active DNA demethylation through the ten-eleven translocation(TET)-mediated base excision repair pathway in embryonic stem cells[J]. Development, 2014, 141(2):269-280.[34] Symington LS. DNA repair:Making the cut[J]. Nature, 2014, 514(7520): 39-40.[35] Kim JS, Krasieva TB, LaMorte V, et al. Specific recruitment of human cohesin to laser-induced DNA damage[J]. J Biol Chem, 2002, 277(47):45149-45153.[36] Takata M, Sasaki MS, Sonoda E, et al. Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells[J]. EMBO J, 1998, 17(18):5497-5508.[37] Toone WM, Aerne BL, Morgan BA, et al. Getting started:regulating the initiation of DNA replication in yeast[J]. Annu Rev Microbiol, 1997, 51:125-149.[38] Ira G, Pellicioli A, Balijja A, et al. DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1[J]. Nature, 2004, 431(7011):1011-1017.[39] Neal JA, Meek K. Choosing the right path:does DNA-PK help make the decision?[J]. Mutat Res, 2011, 711(1/2):73-86.[40] Lee SE, Mitchell RA, Cheng A, et al. Evidence for DNA-PK-dependent and -independent DNA double-strand break repair pathways in mammalian cells as a function of the cell cycle[J]. Mol Cell Biol, 1997, 17(3):1425-1433.[41] Chen BP, Chan DW, Kobayashi J, et al. Cell cycle dependence of DNA-dependent protein kinase phosphorylation in response to DNA double strand breaks[J]. J Biol Chem, 2005, 280(15):14709-14715.[42] Dynan WS, Yoo S. Interaction of Ku protein and DNA-dependent protein kinase catalytic subunit with nucleic acids[J]. Nucleic Acids Res, 1998, 26(7):1551-1559.[43] Roth DB, Wilson JH. Relative rates of homologous and nonhomologous recombination in transfected DNA[J]. Proc Natl Acad Sci USA, 1985, 82(10):3355-3359.[44] Haber JE, Ira G, Malkova A, et al. Repairing a double-strand chromosome break by homologous recombination:revisiting Robin Holliday's model[J]. Philos Trans R Soc Lond B Biol Sci, 2004, 359(1441):79-86.[45] Huertas P. DNA resection in eukaryotes:deciding how to fix the break[J]. Nat Struct Mol Biol, 2010, 17(1):11-16.[46] Balestrini A, Ristic D, Dionne I, et al. The Ku heterodimer and the metabolism of single-ended DNA double-strand breaks[J]. Cell Rep, 2013, 3(6):2033-2045.[47] Wu D, Topper LM, Wilson TE. Recruitment and dissociation of nonhomologous end joining proteins at a DNA double-strand break in Saccharomyces cerevisiae[J]. Genetics, 2008, 178(3):1237-1249.[48] Allen C, Kurimasa A, Brenneman MA, et al. DNA-dependent protein kinase suppresses double-strand break-induced and spontaneous homologous recombination[J]. Proc Natl Acad Sci USA, 2002, 99(6):3758-3763.[49] Delacote F, Han M, Stamato TD, et al. An xrcc4 defect or Wortmannin stimulates homologous recombination specifically induced by double-strand breaks in mammalian cells[J]. Nucleic Acids Res, 2002, 30(15):3454-3463.[50] Shim EY, Chung WH, Nicolette ML, et al. Saccharomyces cerevisiae Mre11/Rad50/Xrs2 and Ku proteins regulate association of Exo1 and Dna2 with DNA breaks[J]. EMBO J, 2010, 29(19):3370-3380.[51] Zhang Y, Hefferin ML, Chen L, et al. Role of Dnl4-Lif1 in nonhomologous end-joining repair complex assembly and suppression of homologous recombination[J]. Nat Struct Mol Biol, 2007, 14(7):639-646.[52] Sun J, Lee KJ, Davis AJ, et al. Human Ku70/80 protein blocks exonuclease 1-mediated DNA resection in the presence of human Mre11 or Mre11/Rad50 protein complex[J]. J Biol Chem, 2012, 287(7): 4936-4945.[53] Shao Z, Davis AJ, Fattah KR, et al. Persistently bound Ku at DNA ends attenuates DNA end resection and homologous recombination[J]. DNA Repair:Amst, 2012, 11(3):310-316.[54] Davis AJ, Chi L, So S, et al. BRCA1 modulates the autophos-phorylation status of DNA-PKcs in S phase of the cell cycle[J]. Nucleic Acids Res, 2015, 42(18):11487-11501.[55] Daley JM, Sung P. RIF1 in DNA break repair pathway choice[J]. Mol Cell, 2013, 49(5):840-841.[56] Escribano-Diaz C, Orthwein A, Fradet-Turcotte A, et al. A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice[J]. Mol Cell, 2013, 49(5):872-883. |