[1] SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. [2] LE D T, URAM J N, WANG H, et al. PD-1 blockade in tumors with mismatch-repair deficiency[J]. N Engl J Med, 2015, 372(26): 2509-2520. [3] VILAR E, GRUBER S B. Microsatellite instability in colorectal cancer-the stable evidence[J]. Nat Rev Clin Oncol, 2010, 7(3): 153-162. [4] KÖKÜER M, NAGUIB R N G, JANCOVIC P, et al. Cancer risk analysis in families with hereditary nonpolyposis colorectal cancer[J]. IEEE Trans Inf Technol Biomed, 2006, 10(3): 581-587. [5] DEKKER E, TANIS P J, VLEUGELS J L A, et al. Colorectal cancer[J]. Lancet, 2019, 394(10207): 1467-1480. [6] CHEN B, SCURRAH C R, MCKINLEY E T, et al. Differential premalignant programs and microenvironment chart distinct paths to malignancy in human colorectal polyps[J]. Cell, 2021, 184(26): 6262-6280.e26. [7] KAWAKAMI H, ZAANAN A, SINICROPE F A. Microsatellite instability testing and its role in the management of colorectal cancer[J]. Curr Treat Options Oncol, 2015, 16(7): 30. [8] KANG S, NA Y, JOUNG S Y, et al. The significance of microsatellite instability in colorectal cancer after controlling for clinicopathological factors[J]. Medicine, 2018, 97(9): e0019. [9] CUI J, ZHANG L, YANG L, et al. The prognostic significance of the treatment response of regional lymph nodes and the refinement of the current TNM staging system in locally advanced rectal cancer after neoadjuvant chemoradiotherapy[J]. Cancer Med, 2020, 9(24): 9373-9384. [10] SETAFFY L, LANGNER C. Microsatellite instability in colorectal cancer: clinicopathological significance[J]. Pol J Pathol, 2015, 66(3): 203-218. [11] BOISSIÈRE-MICHOT F, LAZENNEC G, FRUGIER H, et al. Characterization of an adaptive immune response in microsatelliteinstable colorectal cancer[J]. Oncoimmunology, 2014, 3: e29256. [12] HUA H J, HE W G, CHEN N, et al. Genomic and transcriptomic analysis of MSI-H colorectal cancer patients with targetable alterations identifies clinical implications for immunotherapy[J]. Front Immunol, 2023, 13: 974793. [13] PELKA K, HOFREE M, CHEN J H, et al. Spatially organized multicellular immune hubs in human colorectal cancer[J]. Cell, 2021, 184(18): 4734-4752.e20. [14] LIU B L, ZHANG Y Y, WANG D F, et al. Single-cell meta-analyses reveal responses of tumor-reactive CXCL13+ T cells to immunecheckpoint blockade[J]. Nat Cancer, 2022, 3(9): 1123-1136. [15] ZHANG L, YU X, ZHENG L T, et al. Lineage tracking reveals dynamic relationships of T cells in colorectal cancer[J]. Nature, 2018, 564(7735): 268-272. [16] MEI Y, XIAO W W, HU H, et al. Single-cell analyses reveal suppressive tumor microenvironment of human colorectal cancer[J]. Clin Transl Med, 2021, 11(6): e422. [17] LEE H O, HONG Y, ETLIOGLU H E, et al. Lineage-dependent gene expression programs influence the immune landscape of colorectal cancer[J]. Nat Genet, 2020, 52(6): 594-603. [18] ZHANG L, LI Z Y, SKRZYPCZYNSKA K M, et al. Single-cell analyses inform mechanisms of myeloid-targeted therapies in colon cancer[J]. Cell, 2020, 181(2): 442-459.e29. [19] LAUSS M, DONIA M, SVANE I M, et al. B cells and tertiary lymphoid structures: friends or foes in cancer immunotherapy?[J]. Clin Cancer Res, 2022, 28(9): 1751-1758. [20] DIEU-NOSJEAN M C, GIRALDO N A, KAPLON H, et al. Tertiary lymphoid structures, drivers of the anti-tumor responses in human cancers[J]. Immunol Rev, 2016, 271(1): 260-275. [21] THOMMEN D S, KOELZER V H, HERZIG P, et al. A transcriptionally and functionally distinct PD-1+ CD8+ T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade[J]. Nat Med, 2018, 24(7): 994-1004. [22] WORKEL H H, LUBBERS J M, ARNOLD R, et al. A transcriptionally distinct CXCL13+ CD103+ CD8+ T-cell population is associated with B-cell recruitment and neoantigen load in human cancer[J]. Cancer Immunol Res, 2019, 7(5): 784-796. [23] POSCH F, SILINA K, LEIBL S, et al. Maturation of tertiary lymphoid structures and recurrence of stage II and III colorectal cancer[J]. Oncoimmunology, 2018, 7(2): e1378844. [24] ALWERS E, JANSEN L, BLÄKER H, et al. Microsatellite instability and survival after adjuvant chemotherapy among stage II and III colon cancer patients: results from a population-based study[J]. Mol Oncol, 2020, 14(2): 363-372. [25] INNOCENTI F, OU F S, QU X P, et al. Mutational analysis of patients with colorectal cancer in CALGB/SWOG 80405 identifies new roles of microsatellite instability and tumor mutational burden for patient outcome[J]. J Clin Oncol, 2019, 37(14): 1217-1227. [26] GALLOIS C, TAIEB J, CORRE D L, et al. Prognostic value of methylator phenotype in stage III colon cancer treated with oxaliplatinbased adjuvant chemotherapy[J]. Clin Cancer Res, 2018, 24(19): 4745-4753. [27] MARABELLE A, LE D T, ASCIERTO P A, et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the phase II KEYNOTE-158 study[J]. J Clin Oncol, 2020, 38(1): 1-10. [28] LE D T, KIM T W, VAN CUTSEM E, et al. Phase II open-label study of pembrolizumab in treatment-refractory, microsatellite instability-high/ mismatch repair-deficient metastatic colorectal cancer: keynote-164[J]. J Clin Oncol, 2020, 38(1): 11-19. [29] OVERMAN M J, MCDERMOTT R, LEACH J L, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study[J]. Lancet Oncol, 2017, 18(9): 1182-1191. [30] CHALABI M, FANCHI L F, DIJKSTRA K K, et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers[J]. Nat Med, 2020, 26(4): 566-576. [31] CHALABI M, FANCHI L F, DIJKSTRA K K, et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early- stage colon cancers[J]. Nat Med, 2020, 26(4): 566-576. [32] SEPPÄLÄ T T, BÖHM J P, FRIMAN M, et al. Combination of microsatellite instability and BRAF mutation status for subtyping colorectal cancer[J]. Br J Cancer, 2015, 112(12): 1966-1975. [33] KARKI S, MADAN R, SCHMITT S, et al. Overall survival based on MSI and BRAF mutation status for stage II/III colorectal cancer[J]. J Clin Oncol, 2021, 39(Sup 3): 132. |