Carcinogenesis, Teratogenesis & Mutagenesis ›› 2024, Vol. 36 ›› Issue (2): 159-163.doi: 10.3969/j.issn.1004-616x.2024.02.014
Received:
2023-11-03
Revised:
2024-01-04
Published:
2024-04-11
CLC Number:
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3):209-249. [2] ZENG H M, CHEN W Q, ZHENG R S, et al. Changing cancer survival in China during 2003-15:a pooled analysis of 17 population-based cancer registries[J]. Lancet Glob Health, 2018, 6(5):e555-e567. [3] SHEN S Y, SINGHANIA R, FEHRINGER G, et al. Sensitive tumour detection and classification using plasma cell-free DNA methylomes[J]. Nature, 2018, 563(7732):579-583. [4] GUIBERT N, PRADINES A, FAVRE G, et al. Current and future applications of liquid biopsy in nonsmall cell lung cancer from early to advanced stages[J]. Eur Respir Rev, 2020, 29(155):190052. [5] ECONOMOPOULOU P, GEORGOULIAS V, KOTSAKIS A. Classifying circulating tumor cells to monitor cancer progression[J]. Expert Rev Mol Diagn, 2017, 17(2):153-165. [6] HOFMAN P, POPPER H H. Pathologists and liquid biopsies:to be or not to be?[J]. Virchows Arch, 2016, 469(6):601-609. [7] SHEN Z Y, WU A G, CHEN X Y. Current detection technologies for circulating tumor cells[J]. Chem Soc Rev, 2017, 46(8):2038-2056. [8] HAN Y Y, GU Y, ZHANG A C, et al. Review:imaging technologies for flow cytometry[J]. Lab Chip, 2016, 16(24):4639-4647. [9] COUMANS F A, VAN DALUM G, BECK M, et al. Filter characteristics influencing circulating tumor cell enrichment from whole blood[J]. PLoS One, 2013, 8(4):e61770. [10] VONA G, SABILE A, LOUHA M, et al. Isolation by size of epithelial tumor cells:a new method for the immunomorphological and molecular characterization of circulatingtumor cells[J]. Am J Pathol, 2000, 156(1):57-63. [11] HAROUAKA R A, ZHOU M D, YEH Y T, et al. Flexible micro spring array device for high-throughput enrichment of viable circulating tumor cells[J]. Clin Chem, 2014, 60(2):323-333. [12] 王建,邵荣金,龚伟达.循环肿瘤细胞研究进展[J].中国肿瘤外科杂志, 2019, 11(2):141-145. [13] ROSSI T, GALLERANI G, ANGELI D, et al. Single-cell NGS-based analysis of copy number alterations reveals new insights in circulating tumor cells persistence in early-stage breast cancer[J]. Cancers, 2020, 12(9):2490. [14] PAPADAKI M A, SOTIRIOU A I, VASILOPOULOU C, et al. Optimization of the enrichment of circulating tumor cells for downstream phenotypic analysis in patients with non-small cell lung cancer treated with anti-PD-1 immunotherapy[J]. Cancers, 2020, 12(6):1556. [15] ROSENBERG R, GERTLER R, FRIEDERICHS J, et al. Comparison of two density gradient centrifugation systems for the enrichment of disseminated tumor cells in blood[J]. Cytometry, 2002, 49(4):150-158. [16] BALASUBRAMANIAN P, KINDERS R J, KUMMAR S, et al. Antibody-independent capture of circulating tumor cells of nonepithelial origin with the ApoStream® system[J]. PLoS One, 2017, 12(4):e0175414. [17] GAO T, LI W J, MA J L, et al. Selection of DNA aptamer recognizing CD44 for high-efficiency capture of circulating tumor cells[J]. Talanta, 2023, 262:124728. [18] CAO H X, LIU P F, WANG L, et al. Nonenzymatic chemiluminescence detection of circulating tumor cells in blood based on Au@luminol nanoparticles, hybridization chain reaction and magnetic isolation[J]. Sens Actuat B Chem, 2020, 318:128287. [19] QIAN H Z, ZHANG Y, XU J, et al. Progress and application of circulating tumor cells in non-small cell lung cancer[J]. Mol Ther Oncolytics, 2021, 22:72-84. [20] TANAKA F, YONEDA K, KONDO N, et al. Circulating tumor cell as a diagnostic marker in primary lung cancer[J]. Clin Cancer Res, 2009, 15(22):6980-6986. [21] CHEN X X, ZHOU F, LI X F, et al. Folate receptor-positive circulating tumor cell detected by LT-PCR-based method as a diagnostic biomarker for non-small-cell lung cancer[J]. J Thorac Oncol, 2015, 10(8):1163-1171. [22] MANJUNATH Y, UPPARAHALLI S V, SUVILESH K N, et al. Circulating tumor cell clusters are a potential biomarker for detection of non-small cell lung cancer[J]. Lung Cancer, 2019, 134:147-150. [23] ILIE M, HOFMAN V, LONG-MIRA E, et al. "Sentinel" circulating tumor cells allow early diagnosis of lung cancer in patients with chronic obstructive pulmonary disease[J]. PLoS One, 2014, 9(10):e111597. [24] FIORELLI A, ACCARDO M, CARELLI E, et al. Circulating tumor cells in diagnosing lung cancer:clinical and morphologic analysis[J]. Ann Thorac Surg, 2015, 99(6):1899-1905. [25] WANG L, WU C Y, QIAO L H, et al. Clinical significance of folate receptor-positive circulating tumor cells detected by ligand-targeted polymerase chain reaction in lung cancer[J]. J Cancer, 2017, 8(1):104-110. [26] JIN F K, ZHU L, SHAO J B, et al. Circulating tumour cells in patients with lung cancer universally indicate poor prognosis[J]. Eur Respir Rev, 2022, 31(166):220151. [27] WANG J W, WANG K, XU J J, et al. Prognostic significance of circulating tumor cells in non-small-cell lung cancer patients:a meta-analysis[J]. PLoS One, 2013, 8(11):e78070. [28] YU Y, CHEN Z L, DONG J S, et al. Folate receptor-positive circulating tumor cells as a novel diagnostic biomarker in non-small cell lung cancer[J]. Transl Oncol, 2013, 6(6):697-702. [29] KREBS M G, SLOANE R, PRIEST L, et al. Evaluation and prognostic significance of circulating tumor cells in patients with non-small-cell lung cancer[J]. J Clin Oncol, 2011, 29(12):1556-1563. [30] NAITO T, TANAKA F, ONO A, et al. Prognostic impact of circulating tumor cells in patients with small cell lung cancer[J]. J Thorac Oncol, 2012, 7(3):512-519. [31] TONG B, XU Y, ZHAO J, et al. Prognostic role of circulating tumor cells in patients with EGFR-mutated or ALK-rearranged non-small cell lung cancer[J]. Thorac Cancer, 2018, 9(5):640-645. [32] CHINNIAH C, AGUARIN L, CHENG P, et al. Early detection of recurrence in patients with locally advanced non-small-cell lung cancer via circulating tumor cell analysis[J]. Clin Lung Cancer, 2019, 20(5):384-390.e2. [33] HOU J M, GREYSTOKE A, LANCASHIRE L, et al. Evaluation of circulating tumor cells and serological cell death biomarkers in small cell lung cancer patients undergoing chemotherapy[J]. Am J Pathol, 2009, 175(2):808-816. [34] MURRAY N, TURRISI A T 3rd. A review of first-line treatment for small-cell lung cancer[J]. J Thorac Oncol, 2006, 1(3):270-278. [35] LIU D G, XUE L, LI J, et al. Epithelial-mesenchymal transition and GALC expression of circulating tumor cells indicate metastasis and poor prognosis in non-small cell lung cancer[J]. Cancer Biomark, 2018, 22(3):417-426. [36] KULASINGHE A, KAPELERIS J, KIMBERLEY R, et al. The prognostic significance of circulating tumor cells in head and neck and non-small-cell lung cancer[J]. Cancer Med, 2018, 7(12):5910-5919. [37] TARTARONE A, ROSSI E, LEROSE R, et al. Possible applications of circulating tumor cells in patients with non small cell lung cancer[J]. Lung Cancer, 2017, 107:59-64. [38] LIU Y F, XING Z, ZHAN P, et al. Is it feasible to detect epidermal growth factor receptor mutations in circulating tumor cells in nonsmall cell lung cancer?:a meta-analysis[J]. Medicine, 2016, 95(47):e5115. [39] ZHANG X, YANG D Y, JIANG Y, et al. Comparison of radiation pneumonitis in lung cancer patients treated with HT versus IMRT and circulating lymphocyte subsets as predicting risk factors[J]. J Inflamm Res, 2021, 14:4205-4215. [40] ILIE M, LONG E, BUTORI C, et al. ALK-gene rearrangement:a comparative analysis on circulating tumour cells and tumour tissue from patients with lung adenocarcinoma[J]. Ann Oncol, 2012, 23(11):2907-2913. [41] PAILLER E, FAUGEROUX V, OULHEN M, et al. Acquired resistance mutations to ALK inhibitors identified by single circulating tumor cell sequencing in ALK-rearranged non-small-cell lung cancer[J]. Clin Cancer Res, 2019, 25(22):6671-6682. [42] LAZZARI C, KARACHALIOU N, BULOTTA A, et al. Combination of immunotherapy with chemotherapy and radiotherapy in lung cancer:is this the beginning of the end for cancer?[J]. Ther Adv Med Oncol, 2018, 10:1758835918762094. [43] 徐静,高雯.循环肿瘤细胞在肺癌中的研究应用与未来展望[J].医学研究生学报, 2022, 35(9):897-902. [44] YUE C Y, JIANG Y B, LI P, et al. Dynamic change of PD-L1 expression on circulating tumor cells in advanced solid tumor patients undergoing PD-1 blockade therapy[J]. Oncoimmunology, 2018, 7(7):e1438111. [45] ALAMA A, COCO S, GENOVA C, et al. Prognostic relevance of circulating tumor cells and circulating cell-free DNA association in metastatic non-small cell lung cancer treated with nivolumab[J]. J Clin Med, 2019, 8(7):1011. [46] LABIB M, KELLEY S O. Circulating tumor cell profiling for precision oncology[J]. Mol Oncol, 2021, 15(6):1622-1646. [47] PANTEL K, ALIX-PANABIÈRES C. Liquid biopsy and minimal residual disease-latest advances and implications for cure[J]. Nat Rev Clin Oncol, 2019, 16:409-424. [48] WU C P, WU P, ZHAO H F, et al. Clinical applications of and challenges in single-cell analysis of circulating tumor cells[J]. DNA Cell Biol, 2018, 37(2):78-89. [49] DAI Z, GU X Y, XIANG S Y, et al. Research and application of single-cell sequencing in tumor heterogeneity and drug resistance of circulating tumor cells[J]. Biomark Res, 2020, 8(1):60. |
[1] | LIU Ying, WANG Rui, GUO Xiao, DONG Lüli, ZHANG Yan, ZHAO Yinhuan, DU Yun. Relationships between DNA ploidy abnormality and EGFR mutation in pleural effusions, and their effects on prognosis of lung adenocarcinomas [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2023, 35(3): 178-182,186. |
[2] | YU Yunliang, WANG Lili, LI Ting, FENG Jiankai. Correlations among P2RX1,prognosis and immune cells infiltration in lung adenocarcinoma [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2022, 34(5): 353-360,365. |
[3] | QI Jiankao, TANG Xiao, SUN Shihui, KOU Yanfang, CUI Zhiqin. Growth inhibition of non-small cell lung cancers by Zaoci decotion in combination with cisplatin and gemcitabine [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2022, 34(5): 366-372,403. |
[4] | FENG Zhiyin, WU Yixian, HA Xiaodan, CHEN Wujin, LI Xiumei, DONG Juanjuan. Detection of p38MAPK gene in plasma cell-free DNA among patients with high incidence of esophageal cancer [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2022, 34(2): 105-109. |
[5] | WANG Rui, LIU Ying, WU Juan, JI Xiaokun, MA Yang, GUO Xiao, DU Yun. CXCR4, Ki67, MDM2 and N-cadherin expressions in lung adenocarcinoma pleural effusion cells and their correlation with EGFR mutation status [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2022, 34(2): 114-118. |
[6] | WANG Rui, WANG Heng, WU Juan, JI Xiaokun, GUO Xiao, MA Yang, DU Yun. Values of automatic DNA image analyses in diagnosis of pancreatic malignant tumors [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2021, 33(6): 451-454. |
[7] | ZENG Zhuoying, WU Desheng, LU Jingjing, LIAO Hui, LAI Hongpiao, YUAN Jianhui, HU Zhangli. Mediation by estrogen receptor α on oxidative phosphorylation pathways in development of lung cancer [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2021, 33(4): 262-268. |
[8] | LIU Xiaoxia, LI Weixia, LI Zhijia, SU Zhenjun, DUAN Xiaohui, HAN Weiwen, WANG Yunxiao, HE Xiaolei, Lu Linlin, JIA Jinhai. Correlations between glutathione peroxidase in serum and clinicopathological outcomes of advanced non-small cell lung cancer [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2021, 33(4): 286-290,295. |
[9] | WANG Xikai, MENG Qinghe, GAO Yanlu. miR-223-3p negatively regulated ECT2 to induce apoptosis in non-small cell lung cancer cells [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2021, 33(3): 187-192. |
[10] | DU Qiang, YAO Yiyong, ZENG Gang. Expression and clinical significance of ASPM in lung adenocarcinoma according to the TCGA database [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2020, 32(6): 457-463. |
[11] | LIU Xiaoxia, LI Weixia, SU Zhenjun, JIA Jinhai, DUAN Xiaohui, LI Zhijia, HE Xiaolei, L Linlin, LIU Rui, WANG Yunxiao. Analyses of clinicopathological characteristics and curative effect of combined radio-with chemo-therapy for advanced non-small cell lung cancer with superoxide dismutase activity in serum [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2020, 32(5): 350-354. |
[12] | SHAO Junguo, JIAO Wenjing, WANG Xuexiao, ZHANG Jinyan, MA Ming. Clinical significance of mi-429 and Bmi-1 mRNA expressions in lung carcinoma tissues [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2020, 32(5): 369-373. |
[13] | FENG Min, ABBIE·Mohetar, SHI Jingyi, ZUKELAI·Alijiang, LI Yongxiang, YAN Changshun, LI Xiumei. Expression of miR-143, miR-145 and Survivin mRNA in esophageal cancers among Kazaks [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2020, 32(1): 29-32. |
[14] | YING Wei, WANG Xingyuan, JIANG Bo, ZHOU Wei. Association between polymorphisms in the miR-146a and susceptibility to non-small cell lung cancer [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2019, 31(3): 222-226. |
[15] | MA Ming, BAI Hanyu, LI Xiaoya, WANG Yanhai, ZHAO Riyang, DAI Suli, WU Yipeng, ZHANG Cong, ZHAO Lianmei, SHAN Baoen. Toxicological effect of p-hydroxylcinnamaldehyde extract from the Cochinchina momordica seeds on mice [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2018, 30(6): 452-456,462. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||