[1] PAŞCA A M, PARK J Y, SHIN H W, et al. Human 3D cellular model of hypoxic brain injury of prematurity[J]. Nat Med, 2019, 25(5): 784791. [2] GENOVA E, CAVION F, LUCAFÒ M, et al. Induced pluripotent stem cells for therapy personalization in pediatric patients: focus on druginduced adverse events[J]. World J Stem Cells, 2019, 11(12): 1020-1044. [3] DUTTA D, HEO I, CLEVERS H. Disease modeling in stem cellderived 3D organoid systems[J]. Trends Mol Med, 2017, 23(5): 393-410. [4] UZQUIANO A, KEDAIGLE A J, PIGONI M, et al. Proper acquisition of cell class identity in organoids allows definition of fate specification programs of the human cerebral cortex[J]. Cell, 2022, 185(20): 3770- 3788. [5] LANCASTER M A, RENNER M, MARTIN C A, et al. Cerebral organoids model human brain development and microcephaly[J]. Nature, 2013, 501(7467): 373-379. [6] CAMP J G, BADSHA F, FLORIO M, et al. Human cerebral organoids recapitulate gene expression programs of fetal neocortex development[J]. Proc Natl Acad Sci U S A, 2015, 112(51): 15672-15677. [7] BU Q, DAI Y P, ZHANG H Q, et al. Neurodevelopmental defects in human cortical organoids with N-acetylneuraminic acid synthase mutation[J]. Sci Adv, 2023, 9(47): 2772. [8] CHIARADIA I, LANCASTER M A. Brain organoids for the study of human neurobiology at the interface of in vitro and in vivo[J]. Nat Neurosci, 2020, 23(12): 1496-1508. [9] QIAN X Y, NGUYEN H N, SONG M M, et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure[J]. Cell, 2016, 165(5): 1238-1254. [10] JO J, XIAO Y X, SUN A X, et al. Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelaninproducing neurons[J]. Cell Stem Cell, 2016, 19(2): 248-257. [11] XIANG Y F, TANAKA Y, CAKIR B, et al. hESC-derived thalamic organoids form reciprocal projections when fused with cortical organoids [J]. Cell Stem Cell, 2019, 24(3): 487-497. [12] HUANG W K, WONG S Z H, PATHER S R, et al. Generation of hypothalamic arcuate organoids from human induced pluripotent stem cells[J]. Cell Stem Cell, 2021, 28(9): 1657-1670. [13] LEE J H, SHIN H, SHAKER M R, et al. Production of human spinal-cord organoids recapitulating neural-tube morphogenesis[J]. Nat Biomed Eng, 2022, 6(4): 435-448. [14] HE Z S, MAYNARD A, JAIN A, et al. Lineage recording in human cerebral organoids[J]. Nat Methods, 2022, 19(1): 90-99. [15] GIANDOMENICO S L, MIERAU S B, GIBBONS G M, et al. Cerebral organoids at the air-liquid interface generate diverse nerve tracts with functional output[J]. Nat Neurosci, 2019, 22(4): 669-679. [16] BHADURI A, ANDREWS M G, MANCIA LEON W, et al. Cell stress in cortical organoids impairs molecular subtype specification[J]. Nature, 2020, 578(7793): 142-148. [17] MANSOUR A A, GONÇALVES J T, BLOYD C W, et al. Erratum: an in vivo model of functional and vascularized human brain organoids[J]. Nat Biotechnol, 2018, 36(8): 772. [18] LI M H, GAO L X, ZHAO L, et al. Toward the next generation of vascularized human neural organoids[J]. Med Res Rev, 2023, 43(1): 31-54. [19] QIAN X Y, SU Y J, ADAM C D, et al. Sliced human cortical organoids for modeling distinct cortical layer formation[J]. Cell Stem Cell, 2020, 26(5): 766-781. [20] ANDERSEN J, REVAH O, MIURA Y, et al. Generation of functional human 3D cortico-motor assembloids[J]. Cell, 2020, 183(7): 1913-1929. [21] SCHAFER S T, MANSOUR A A, SCHLACHETZKI J C M, et al. An in vivo neuroimmune organoid model to study human microglia phenotypes [J]. Cell, 2023, 186(10): 2111-2126.e20. [22] PARK D S, KOZAKI T, TIWARI S K, et al. iPS-cell-derived microglia promote brain organoid maturation via cholesterol transfer[J]. Nature, 2023, 623(7986): 397-405. [23] HENDRIKS D, PAGLIARO A, ANDREATTA F, et al. Human fetal brain self-organizes into long-term expanding organoids[J]. Cell, 2024, 187(3): 712-732. [24] MOORE T J, MOUSLIM M C, BLUNT J L, et al. Assessment of availability, clinical testing, and US food and drug administration review of biosimilar biologic products[J]. JAMA Intern Med, 2021, 181(1): 52-60. [25] BAL-PRICE A, PISTOLLATO F, SACHANA M, et al. Strategies to improve the regulatory assessment of developmental neurotoxicity (DNT) using in vitro methods[J]. Toxicol Appl Pharmacol, 2018, 354: 7-18. [26] ELLIOTT R A, CAMACHO E, JANKOVIC D, et al. Economic analysis of the prevalence and clinical and economic burden of medication error in England[J]. BMJ Qual Saf, 2021, 30(2): 96-105. [27] CROFTON K M, MUNDY W R, LEIN P J, et al. Developmental neurotoxicity testing: recommendations for developing alternative methods for the screening and prioritization of chemicals[J]. ALTEX, 2011, 28(1): 9-15. [28] JIANG M, TANG T X, LIANG X Y, et al. Maternal sevoflurane exposure induces temporary defects in interkinetic nuclear migration of radial glial progenitors in the fetal cerebral cortex through the Notch signalling pathway[J]. Cell Prolif, 2021, 54(6): e13042. [29] ZHONG X L, HARRIS G, SMIRNOVA L, et al. Antidepressant paroxetine exerts developmental neurotoxicity in an iPSC-derived 3D human brain model[J]. Front Cell Neurosci, 2020, 14: 25. [30] HUANG J, LIU F K, TANG H, et al. Tranylcypromine causes neurotoxicity and represses BHC110/LSD1 in human-induced pluripotent stem cell-derived cerebral organoids model[J]. Front Neurol, 2017, 8: 626. [31] RAJAN S A P, ALEMAN J, WAN M M, et al. Probing prodrug metabolism and reciprocal toxicity with an integrated and humanized multi-tissue organ-on-a-chip platform[J]. Acta Biomater, 2020, 106: 124-135. [32] SCHOLZ S, LEWIS K, SAULICH F, et al. Induced pluripotent stem cell-derived brain organoids as potential human model system for chemotherapy induced CNS toxicity[J]. Front Mol Biosci, 2022, 9: 1006497. [33] LIU F K, HUANG J, LIU Z X. Vincristine impairs microtubules and causes neurotoxicity in cerebral organoids[J]. Neuroscience, 2019, 404: 530-540. [34] HO M F, ZHANG C, MOON I, et al. Single cell transcriptomics reveals distinct transcriptional responses to oxycodone and buprenorphine by iPSC-derived brain organoids from patients with opioid use disorder[J]. Mol Psychiatry, 2022. doi: 10.1038/s41380-022-01837-8. [35] CRUCEANU C, DONY L, KRONTIRA A C, et al. Cell-type-specific impact of glucocorticoid receptor activation on the developing brain: a cerebral organoid study[J]. Am J Psychiatry, 2022, 179(5): 375-387. [36] RABELING A, GOOLAM M. Cerebral organoids as an in vitro model to study autism spectrum disorders[J]. Gene Ther, 2023, 30(9): 659-669. [37] FAIR S R, SCHWIND W, JULIAN D L, et al. Cerebral organoids containing an AUTS2 missense variant model microcephaly[J]. Brain, 2023, 146(1): 387-404. [38] ZIVKO C, SAGAR R, XYDIA A, et al. iPSC-derived hindbrain organoids to evaluate escitalopram oxalate treatment responses targeting neuropsychiatric symptoms in Alzheimer ' s disease[J]. Mol Psychiatry, 2024. doi: 10.1038/s41380-024-02629-y. [39] SZEBÉNYI K, WENGER L M D, SUN Y, et al. Human ALS/FTD brain organoid slice cultures display distinct early astrocyte and targetable neuronal pathology[J]. Nat Neurosci, 2021, 24(11): 1542-1554. [40] JARAZO J, BARMPA K, MODAMIO J, et al. Parkinson’s disease phenotypes in patient neuronal cultures and brain organoids improved by 2-hydroxypropyl-β-cyclodextrin treatment[J]. Mov Disord, 2022, 37(1): 80-94. [41] KAGAN B J, KITCHEN A C, TRAN N T, et al. In vitro neurons learn and exhibit sentience when embodied in a simulated game-world[J]. Neuron, 2022, 110(23): 3952-3969. |