[1] VANDENBERG L N, CHAHOUD I, HEINDEL J J, et al. Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to bisphenol A[J]. Environ Health Perspect, 2010, 118(8): 1055-1070. [2] SASSO A F, PIROW R, ANDRA S S, et al. Pharmacokinetics of bisphenol A in humans following dermal administration[J]. Environ Int, 2020, 144: 106031. [3] TEEGUARDEN J G, WAECHTER J M Jr, CLEWELL H J, et al. Evaluation of oral and intravenous route pharmacokinetics, plasma protein binding, and uterine tissue dose metrics of bisphenol A: a physiologically based pharmacokinetic approach[J]. Toxicol Sci, 2005, 85(2): 823-838. [4] MATSUMOTO J, YOKOTA H, YUASA A. Developmental increases in rat hepatic microsomal UDP-glucuronosyltransferase activities toward xenoestrogens and decreases during pregnancy[J]. Environ Health Perspect, 2002, 110(2): 193-196. [5] EKSTR-M L, JOHANSSON M, RANE A. Tissue distribution and relative gene expression of UDP-glucuronosyltransferases (2B7, 2B15, 2B17) in the human fetus[J]. Drug Metab Dispos, 2013, 41(2): 291-295. [6] YE X Y, KUKLENYIK Z, NEEDHAM L L, et al. Measuring environmental phenols and chlorinated organic chemicals in breast milk using automated on-line column-switching-high performance liquid chromatography-isotope dilution tandem mass spectrometry[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2006, 831(1/2): 110-115. [7] IKEZUKI Y, TSUTSUMI O, TAKAI Y, et al. Determination of bisphenol A concentrations in human biological fluids reveals significant early prenatal exposure[J]. Hum Reprod, 2002, 17(11): 2839-2841. [8] SCH-NFELDER G, WITTFOHT W, HOPP H, et al. Parent bisphenol A accumulation in the human maternal-fetal-placental unit[J]. Environ Health Perspect, 2002, 110(11): A703-A707. [9] TEODORO J S, VARELA A T, ROLO A P, et al. High-fat and obesogenic diets: current and future strategies to fight obesity and diabetes[J]. Genes Nutr, 2014, 9(4): 406. [10] MATYASH V, LIEBISCH G, KURZCHALIA T V, et al. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics[J]. J Lipid Res, 2008, 49(5): 1137-1146. [11] CALAFAT A M, YE X Y, WONG L Y, et al. Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003-2004[J]. Environ Health Perspect, 2008, 116(1): 39-44. [12] LITE C, RAJA G L, JULIET M, et al. In utero exposure to endocrine-disrupting chemicals, maternal factors and alterations in the epigenetic landscape underlying later-life health effects[J]. Environ Toxicol Pharmacol, 2022, 89: 103779. [13] TROISI J, MIKELSON C, RICHARDS S, et al. Placental concentrations of bisphenol A and birth weight from births in the Southeastern U.S[J]. Placenta, 2014, 35(11): 947-952. [14] MIAO M H, YUAN W, ZHU G P, et al. In utero exposure to bisphenol-A and its effect on birth weight of offspring[J]. Reprod Toxicol, 2011, 32(1): 64-68. [15] TAYLOR J A, SOMMERFELD-SAGER J M, MENG C X, et al. Reduced body weight at weaning followed by increased post-weaning growth rate interacts with part-per-trillion fetal serum concentrations of bisphenol A (BPA) to impair glucose tolerance in male mice[J]. PLoS One, 2018, 13(12): e0208846. [16] SUMMERS S A, CHAURASIA B, HOLLAND W L. Metabolic messengers: ceramides[J]. Nat Metab, 2019, 1(11): 1051-1058. [17] WIGGER D, SCHUMACHER F, SCHNEIDER-SCHAULIES S, et al. Sphingosine 1-phosphate metabolism and insulin signaling[J]. Cell Signal, 2021, 82: 109959. [18] BOSLEM E, MEIKLE P J, BIDEN T J. Roles of ceramide and sphingolipids in pancreatic β-cell function and dysfunction[J]. Islets, 2012, 4(3): 177-187. [19] SOKOLOWSKA E, BLACHNIO-ZABIELSKA A. The role of ceramides in insulin resistance[J]. Front Endocrinol, 2019, 10: 577. [20] ABURASAYN H, AL BATRAN R, USSHER J R. Targeting ceramide metabolism in obesity[J]. Am J Physiol Endocrinol Metab, 2016, 311(2): E423-E435. [21] NEELAND I J, SINGH S, MCGUIRE D K, et al. Relation of plasma ceramides to visceral adiposity, insulin resistance and the development of type 2 diabetes mellitus: the Dallas heart study[J]. Diabetologia, 2018, 61(12): 2570-2579. [22] CHEW W S, TORTA F, JI S S, et al. Large-scale lipidomics identifies associations between plasma sphingolipids and T2DM incidence[J]. JCI Insight, 2019, 5(13): e126925. [23] YUN H, SUN L, WU Q Q, et al. Associations among circulating sphingolipids, β-cell function, and risk of developing type 2 diabetes: a population-based cohort study in China[J]. PLoS Med, 2020, 17(12): e1003451. [24] HAGE HASSAN R, BOURRON O, HAJDUCH E. Defect of insulin signal in peripheral tissues: important role of ceramide[J]. World J Diabetes, 2014, 5(3): 244-257. [25] MUNDRA P A, BARLOW C K, NESTEL P J, et al. Large-scale plasma lipidomic profiling identifies lipids that predict cardiovascular events in secondary prevention[J]. JCI Insight, 2018, 3(17): e121326. [26] MCGURK K A, KEAVNEY B D, NICOLAOU A. Circulating ceramides as biomarkers of cardiovascular disease: evidence from phenotypic and genomic studies[J]. Atherosclerosis, 2021, 327: 18-30. [27] TURPIN-NOLAN S M, BRÜNING J C. The role of ceramides in metabolic disorders: when size and localization matters[J]. Nat Rev Endocrinol, 2020, 16(4): 224-233. [28] VÉRET J, COANT N, BERDYSHEV E V, et al. Ceramide synthase 4 and de novo production of ceramides with specific N-acyl chain lengths are involved in glucolipotoxicity-induced apoptosis of INS-1β-cells[J]. Biochem J, 2011, 438(1): 177-189. [29] CHAURASIA B, YING L, TALBOT C L, et al. Ceramides are necessary and sufficient for diet-induced impairment of thermogenic adipocytes[J]. Mol Metab, 2021, 45: 101145. [30] WANG G F, HONG X, YU J, et al. Enhancing de novo ceramide synthesis induced by bisphenol A exposure aggravates metabolic derangement during obesity[J]. Mol Metab, 2023, 73: 101741. |