[1] KHATERI S, GHANEI M, KESHAVARZ S, et al. Incidence of lung, eye, and skin lesions as late complications in 34, 000 Iranians with wartime exposure to mustard agent[J]. J Occup Environ Med, 2003, 45(11): 1136-1143. [2] OJHA S, ABRAMSON J, DORLING J. Sedation and analgesia from prolonged pain and stress during mechanical ventilation in preterm infants: is dexmedetomidine an alternative to current practice-[J]. BMJ Paediatr Open, 2022, 6(1): e001460. [3] 刘云, 杨旭东. 右美托咪定肺保护作用的研究进展[J]. 中国口腔医学继续教育杂志, 2023, 26(6): 442-448. [4] SHI J, YU T X, SONG K, et al. Dexmedetomidine ameliorates endotoxin-induced acute lung injury in vivo and in vitro by preserving mitochondrial dynamic equilibrium through the HIF-1a/HO-1 signaling pathway[J]. Redox Biol, 2021, 41: 101954. [5] KARABULUT G, BEDIRLI N, AKYüREK N, et al. Dose-related effects of dexmedetomidine on sepsis-initiated lung injury in rats[J]. Braz J Anesthesiol, 2021, 71(3): 271-277. [6] BAI Y X, ZHANG J H, ZHAO B C, et al. Dexmedetomidine attenuates one-lung ventilation associated lung injury by suppressing inflammatory responses: a systematic review and meta-analysis[J]. Clin Exp Pharmacol Physiol, 2021, 48(9): 1203-1214. [7] WANG X, ZHANG B, LI G Q, et al. Dexmedetomidine alleviates lung oxidative stress injury induced by ischemia-reperfusion in diabetic rats via the Nrf2-Sulfiredoxin1 pathway[J]. Biomed Res Int, 2022, 2022: 5584733. [8] LIU T, SUN L, ZHANG Y B, et al. Imbalanced GSH/ROS and sequential cell death[J]. J Biochem Mol Toxicol, 2022, 36(1): e22942. [9] WATANABE K, SHIBUYA S, OZAWA Y, et al. Pathological relationship between intracellular superoxide metabolism and p53 signaling in mice[J]. Int J Mol Sci, 2021, 22(7): 3548. [10] HAN D W, OH J E, LIM B J, et al. Dexmedetomidine attenuates subarachnoid hemorrhage-induced acute lung injury through regulating autophagy and TLR/NFκB signaling pathway[J]. Korean J Anesthesiol, 2022, 75(6): 518-529. [11] SABNAM S, RIZWAN H, PAL S, et al. CEES-induced ROS accumulation regulates mitochondrial complications and inflammatory response in keratinocytes[J]. Chem Biol Interact, 2020, 321: 109031. [12] 龚楚楚. MiR-199a-5p在人脐带间充质干细胞来源的外泌体改善芥子气肺损伤中的作用与机制[D]. 上海: 中国人民解放军海军军医大学, 2022. [13] MARIAPPAN N, HUSAIN M, ZAFAR I, et al. Extracellular nucleic acid scavenging rescues rats from sulfur mustard analog-induced lung injury and mortality[J]. Arch Toxicol, 2020, 94(4): 1321-1334. [14] 丁允莹, 嵇富海, 彭科. 右美托咪定的器官保护作用及其机制概述[J]. 解放军医学杂志, 2023, 48(11): 1267-1275. [15] 吴新民, 薛张纲, 马虹, 等. 右美托咪定临床应用专家共识(2018)[J]. 临床麻醉学杂志, 2018, 34(8): 820-823. [16] SONG K, SHI J, ZHAN L N, et al. Dexmedetomidine modulates mitochondrial dynamics to protect against endotoxin-induced lung injury via the protein kinase C-ɑ/haem oxygenase-1 signalling pathway[J]. Biomarkers, 2022, 27(2): 159-168. [17] AMINI H, SOLAYMANI-DODARAN M, MOUSAVI B, et al. Long-term health outcomes among survivors exposed to sulfur mustard in Iran[J]. JAMA Netw Open, 2020, 3(12): e2028894. [18] ANDRES D K, KEYSER B M, MELBER A A, et al. Apoptotic cell death in rat lung following mustard gas inhalation[J]. Am J Physiol Lung Cell Mol Physiol, 2017, 312(6): L959-L968. [19] 孔德钦, 刘思佳, 刘建豪, 等. 肝细胞核因子-1b在糜烂性毒剂2-氯乙基乙基硫醚诱导急性肺支气管上皮细胞损伤中的作用及其机制[J]. 癌变·畸变·突变, 2024, 36(1): 1-8. [20] 原杨, 尚悦, 王鹏, 等. 基于斑马鱼模型的中药致肝脏毒性评价的研究进展[J]. 药物评价研究, 2024, 47(5): 933-940. [21] 夏延贞, 王龙珍, 莫靓, 等. 右美托咪定通过lncRNA H19介导香烟提取物诱导的肺泡巨噬细胞效应研究[J]. 毒理学杂志, 2021, 35(1): 56-60, 66. [22] MORANA O, WOOD W, GREGORY C D. The apoptosis paradox in cancer[J]. Int J Mol Sci, 2022, 23(3): 1328. [23] LAM T Y W, NGUYEN N, PEH H Y, et al. ISM1 protects lung homeostasis via cell-surface GRP78-mediated alveolar macrophage apoptosis[J]. Proc Natl Acad Sci U S A, 2022, 119(4): e2019161119. [24] HONG J G, CHEN Q M, WANG Y B, et al. Dexmedetomidine alleviates smoke-induced bronchial and alveolar epithelial cell injury[J]. Gen Physiol Biophys, 2020, 39(3): 293-300. [25] CUI H B, ZHANG Q. Dexmedetomidine ameliorates lipopolysaccharide-induced acute lung injury by inhibiting the PI3K/Akt/FoxO1 signaling pathway[J]. J Anesth, 2021, 35(3): 394-404. [26] BRILLO V, CHIEREGATO L, LEANZA L, et al. Mitochondrial dynamics, ROS, and cell signaling: a blended overview[J]. Life, 2021, 11(4): 332. [27] JIANG Y, KRANTZ S, QIN X, et al. Caveolin-1 controls mitochondrial damage and ROS production by regulating fission - fusion dynamics and mitophagy[J]. Redox Biol, 2022, 52: 102304. [28] LI Z H, PAN H T, YANG J H, et al. Xuanfei Baidu formula alleviates impaired mitochondrial dynamics and activated NLRP3 inflammasome by repressing NF-κB and MAPK pathways in LPS-induced ALI and inflammation models[J]. Phytomedicine, 2023, 108: 154545. [29] LIU M L, WU X, CUI Y L, et al. Mitophagy and apoptosis mediated by ROS participate in AlCl3-induced MC3T3-E1 cell dysfunction[J]. Food Chem Toxicol, 2021, 155: 112388. [30] ZAIB S, HAYYAT A, ALI, et al. Role of mitochondrial membrane potential and lactate dehydrogenase A in apoptosis[J]. Anticancer Agents Med Chem, 2022, 22(11): 2048-2062. [31] AL-ZUBAIDI U, LIU J, CINAR O, et al. The spatio-temporal dynamics of mitochondrial membrane potential during oocyte maturation[J]. Mol Hum Reprod, 2019, 25(11): 695-705. [32] WANG L, DING Y L, BAI Y H, et al. The activation of SIRT3 by dexmedetomidine mitigates limb ischemia-reperfusion-induced lung injury[J]. Ann Transl Med, 2022, 10(6): 319. [33] XU J J, LEI S Q, YE G. Dexmedetomidine attenuates oxidative/nitrative stress in lung tissues of septic mice partly via activating heme oxygenase-1[J]. Exp Ther Med, 2019, 18(4): 3071-3077. [34] CHEN Y Y, HUANG Y, XIONG B R, et al. Dexmedetomidine ameliorates renal ischemia reperfusion-mediated activation of the NLRP3 inflammasome in alveolar macrophages[J]. Gene, 2020, 758: 144973. [35] SHI F Q, ZHANG Z H, CUI H N, et al. Analysis by transcriptomics and metabolomics for the proliferation inhibition and dysfunction through redox imbalance-mediated DNA damage response and ferroptosis in male reproduction of mice and TM4 Sertoli cells exposed to PM2.5[J]. Ecotoxicol Environ Saf, 2022, 238: 113569. [36] 姜晓旭, 孙慕涵, 张渤旭, 等. 特女贞苷对脂多糖诱导的巨噬细胞促炎反应的抑制作用及机制[J]. 癌变·畸变·突变, 2023, 35(4): 245-252. |