[1] HAN B F, ZHENG R S, ZENG H M, et al. Cancer incidence and mortality in China, 2022[J]. J Natl Cancer Cent, 2024, 4(1): 47-53. [2] ZHANG Y, VACCARELLA S, MORGAN E, et al. Global variations in lung cancer incidence by histological subtype in 2020: a population-based study[J]. Lancet Oncol, 2023, 24(11): 1206-1218. [3] FAHRMANN J F, MARSH T, IRAJIZAD E, et al. Blood-based biomarker panel for personalized lung cancer risk assessment [J]. J Clin Oncol, 2022, 40(8): 876-883. [4] DAGNINO S, BODINIER B, GUIDA F, et al. Prospective identification of elevated circulating CDCP1 in patients years before onset of lung cancer[J]. Cancer Res, 2021, 81(13): 3738- 3748. [5] MULLER D C, LAROSE T L, HODGE A, et al. Circulating high sensitivity C reactive protein concentrations and risk of lung cancer: nested case-control study within Lung Cancer Cohort Consortium[J]. BMJ, 2019, 364: k4981. [6] 王高银. 血清标志物CYFRA21-1、NSE、CEA、CA125联合检测在肺癌诊断中的应用价值[J]. 世界复合医学, 2019, 5(8): 30-32. [7] 王俊青, 闫迪, 毛瑞. 低剂量螺旋CT联合血清VEGF、CEA、 CA125水平检测在早期肺癌诊断中的价值[J]. 实用癌症杂志, 2023, 38(3): 418-421. [8] ABBONA G C, PAPOTTI M, GUGLIOTTA P, et al. Immunohistochemical detection of carcinoembryonic antigen (CEA) in non-neoplastic lung disease[J]. Int J Biol Markers, 1993, 8(4): 240-243. [9] GOLDSTEIN M J, MITCHELL E P. Carcinoembryonic antigen in the staging and follow-up of patients with colorectal cancer [J]. Cancer Invest, 2005, 23(4): 338-351. [10] OSTRIN E J, SIDRANSKY D, SPIRA A, et al. Biomarkers for lung cancer screening and detection[J]. Cancer Epidemiol Biomark Prev, 2020, 29(12): 2411-2415. [11] BROTHERS J F, HIJAZI K, MASCAUX C, et al. Bridging the clinical gaps: genetic, epigenetic and transcriptomic biomarkers for the early detection of lung cancer in the postNational Lung Screening Trial era[J]. BMC Med, 2013, 11: 168. [12] XIAO C, WU H, LONG J, et al. Olink profiling of intestinal tissue identifies novel biomarkers for colorectal cancer[J]. J Proteome Res, 2025, 24(2): 599-611. [13] MA C C, LI Y W, LI J, et al. Comprehensive and deep profiling of the plasma proteome with protein Corona on zeolite NaY[J]. J Pharm Anal, 2023, 13(5): 503-513. [14] 马晟. MFSD2A在肝细胞肝癌组织中的表达情况及临床意义[D]. 北京: 北京协和医学院, 2024. [15] UKEY N, YANG Z Y, LI B H, et al. Survey on exact kNN queries over high-dimensional data space[J]. Sensors (Basel), 2023, 23(2): 629. [16] SUN X Y, FU Y. Local false discovery rate estimation with competition-based procedures for variable selection[J]. Stat Med, 2024, 43(1): 61-88. [17] 韩宾. 基于血浆低丰度蛋白质组肺癌新型生物标志物的筛选及评估[D]. 广州: 广东药科大学, 2020. [18] MENG R, GORMLEY M, BHAT V B, et al. Low abundance protein enrichment for discovery of candidate plasma protein biomarkers for early detection of breast cancer[J]. J Proteomics, 2011, 75(2): 366-374. [19] TOGNETTI M, SKLODOWSKI K, MÜLLER S, et al. Biomarker candidates for tumors identified from deep-profiled plasma stem predominantly from the low abundant area[J]. J Proteome Res, 2022, 21(7): 1718-1735. [20] LIANG H R, WANG R C, CHENG R, et al. LcProt: Proteomics-based identification of plasma biomarkers for lung cancer multievent, a multicentre study[J]. Clin Transl Med, 2025, 15(1): e70160. [21] XIA L Z, OYANG L, LIN J G, et al. The cancer metabolic reprogramming and immune response[J]. Mol Cancer, 2021, 20(1): 28. [22] GUO K, ZHAO C, LANG B, et al. Regulator of chromosome condensation 2 modulates cell cycle progression, tumorigenesis, and therapeutic resistance[J]. Front Mol Biosci, 2021, 7: 620973. [23] ROBICHAUD N, SONENBERG N, RUGGERO D, et al. Translational control in cancer[J]. Cold Spring Harb Perspect Biol, 2019, 11(7): a032896. [24] GUPTA M, WALTERS B A, KATSARA O, et al. eIF2Bδ blocks the integrated stress response and maintains eIF2B activity and cancer metastasis by overexpression in breast cancer stem cells[J]. Proc Natl Acad Sci USA, 2023, 120(15): e2207898120. [25] HARA N, YAMADA K, TERASHIMA M, et al. Molecular identification of human glutamine- and ammonia-dependent NAD synthetases. Carbon-nitrogen hydrolase domain confers glutamine dependency[J]. J Biol Chem, 2003, 278(13): 10914- 10921. [26] CHOWDHRY S, ZANCA C, RAJKUMAR U, et al. NAD metabolic dependency in cancer is shaped by gene amplification and enhancer remodelling[J]. Nature, 2019, 569(7757): 570-575. [27] JIANG L J, GUO S B, ZHOU Z H, et al. Snai2-mediated upregulation of NADSYN1 promotes bladder cancer progression by interacting with PHB[J]. Clin Transl Med, 2024, 14(1): e1555. [28] GOHLA A, BIRKENFELD J, BOKOCH G M. Chronophin, a novel HAD-type serine protein phosphatase, regulates cofilin-dependent actin dynamics[J]. Nat Cell Biol, 2005, 7(1): 21-29. [29] IZDEBSKA M, ZIELIŃSKA W, GRZANKA D, et al. The role of actin dynamics and actin-binding proteins expression in epithelial-to-mesenchymal transition and its association with cancer progression and evaluation of possible therapeutic targets[J]. Biomed Res Int, 2018, 2018: 4578373. [30] KANG X, ZHAO C F, LIU Y P, et al. The phosphorylation level of Cofilin-1 is related to the pathological subtypes of gastric cancer[J]. Medicine (Baltimore), 2022, 101(43): e31309. [31] KOLEGOVA E S, KAKURINA G V, KONDAKOVA I V, et al. Adenylate cyclase-associated protein 1 and cofilin in progression of non-small cell lung cancer[J]. Bull Exp Biol Med, 2019, 167(3): 393-395. [32] LI X P, MA G L, GUO W J, et al. Hhex inhibits cell migration via regulating RHOA/CDC42-CFL1 axis in human lung cancer cells[J]. Cell Commun Signal, 2021, 19(1): 80. [33] CHANG C Y, CHANG S L, LEU J D, et al. Comparison of cofilin-1 and Twist-1 protein expression in human non-small cell lung cancer tissues[J]. Oncol Rep, 2019, 42(2): 805-816. [34] WENG W J, GU X K, YANG Y, et al. N-terminal α-amino SUMOylation of cofilin-1 is critical for its regulation of actin depolymerization[J]. Nat Commun, 2023, 14(1): 5688. [35] SHISHKIN S, EREMINA L, PASHINTSEVA N, et al. Cofilin-1 and other ADF/cofilin superfamily members in human malignant cells[J]. Int J Mol Sci, 2016, 18(1): 10. [36] ZHANG Y, GUAN X, WANG H, et al. Erratum: Long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 regulates renal cancer cell migration via cofilin-1[J]. Oncol Lett, 2021, 21(5): 361. [37] BECKER M, DE BASTIANI M A, MÜLLER C B, et al. High cofilin-1 levels correlate with cisplatin resistance in lung adenocarcinomas[J]. Tumour Biol, 2014, 35(2): 1233-1238. [38] VEMULA V, HUBER T, UŠAJ M, et al. Myosin and gelsolin cooperate in actin filament severing and actomyosin motor activity[J]. J Biol Chem, 2021, 296: 100181. [39] ELAM W A, KANG H, DE LA CRUZ E M. Biophysics of actin filament severing by cofilin[J]. FEBS Lett, 2013, 587(8): 1215- 1219. [40] KOLEGOVA E S, KAKURINA G V, SHASHOVA E E, et al. Relationship of intracellular proteolysis with CAP1 and cofilin1 in non-small-cell lung cancer[J]. J Biosci, 2021, 46: 55. [41] CHO H J, BAEK G O, YOON M G, et al. Overexpressed proteins in HCC cell-derived exosomes, CCT8, and cofilin-1 are potential biomarkers for patients with HCC[J]. Diagnostics (Basel), 2021, 11(7): 1221. |