[1] LIU F, VAN DER LIJN F, SCHURMANN C, et al. A genome-wide association study identifies five loci influencing facial morphology in Europeans[J]. PLoS Genet, 2012, 8(9): e1002932. [2] SHAFFER J R, ORLOVA E, LEE M K, et al. Genome-wide association study reveals multiple loci influencing normal human facial morphology [J]. PLoS Genet, 2016, 12(8): e1006149. [3] LIU D J, ALHAZMI N, MATTHEWS H, et al. Impact of low-frequency coding variants on human facial shape[J]. Sci Rep, 2021, 11(1): 748. [4] TAM V, PATEL N, TURCOTTE M, et al. Benefits and limitations of genome-wide association studies[J]. Nat Rev Genet, 2019, 20(8): 467-484. [5] VISSCHER P M, WRAY N R, ZHANG Q, et al. 10 years of GWAS discovery: biology, function, and translation[J]. Am J Hum Genet, 2017, 101(1): 5-22. [6] ABDELLAOUI A, YENGO L, VERWEIJ K J H, et al. 15 years of GWAS discovery: realizing the promise[J]. Am J Hum Genet, 2023, 110 (2): 179-194. [7] BONFANTE B, FAUX P, NAVARRO N, et al. A GWAS in Latin Americans identifies novel face shape loci, implicating VPS13B and a Denisovan introgressed region in facial variation[J]. Sci Adv, 2021, 7(6): eabc6160. [8] PATERNOSTER L, ZHUROV A I, TOMA A M, et al. Genome-wide association study of three-dimensional facial morphology identifies a variant in PAX3 associated with nasion position[J]. Am J Hum Genet, 2012, 90(3): 478-485. [9] COLE J B, MANYAMA M, KIMWAGA E, et al. Genomewide association study of African children identifies association of SCHIP1 and PDE8A with facial size and shape[J]. PLoS Genet, 2016, 12(8): e1006174. [10] CHA S, LIM J E, PARK A Y, et al. Identification of five novel genetic loci related to facial morphology by genome-wide association studies[J]. BMC Genomics, 2018, 19(1): 481. [11] CLAES P, ROOSENBOOM J, WHITE J D, et al. Genome-wide mapping of global-to-local genetic effects on human facial shape[J]. Nat Genet, 2018, 50(3): 414-423. [12] CROUCH D J M, WINNEY B, KOPPEN W P, et al. Genetics of the human face: identification of large-effect single gene variants[J]. Proc Natl Acad Sci U S A, 2018, 115(4): E676-E685. [13] LI Y, ZHAO W T, LI D, et al. EDAR, LYPLAL1, PRDM16, PAX3, DKK1, TNFSF12, CACNA2D3, and SUPT3H gene variants influence facial morphology in a Eurasian population[J]. Hum Genet, 2019, 138(6): 681-689. [14] XIONG Z Y, DANKOVA G, HOWE L J, et al. Novel genetic loci affecting facial shape variation in humans[J]. Elife, 2019, 8: e49898. [15] HUANG Y, LI D, QIAO L, et al. A genome-wide association study of facial morphology identifies novel genetic loci in Han Chinese[J]. J Genet Genomics, 2021, 48(3): 198-207. [16] BAJPAI V K, SWIGUT T, MOHAMMED J, et al. A genome-wide genetic screen uncovers determinants of human pigmentation[J]. Science, 2023, 381(6658): eade6289. [17] WANG Q, JIN B, LIU F, et al. DNA-based eyelid trait prediction in Chinese Han population[J]. Int J Legal Med, 2021, 135(5): 1743-1752. [18] ADHIKARI K, FONTANIL T, CAL S, et al. A genome-wide association scan in admixed Latin Americans identifies loci influencing facial and scalp hair features[J]. Nat Commun, 2016, 7: 10815. [19] PENG F D, XIONG Z Y, ZHU G, et al. GWAs identify DNA variants influencing eyebrow thickness variation in Europeans and across continental populations[J]. J Invest Dermatol, 2023, 143(7): 1317-1322. e11. [20] LIU D J, BAN H J, EL SERGANI A M, et al. PRICKLE1×FOCAD interaction revealed by genome-wide vQTL analysis of human facial traits[J]. Front Genet, 2021, 12: 674642. [21] WHITE J D, INDENCLEEF K, NAQVI S, et al. Insights into the genetic architecture of the human face[J]. Nat Genet, 2021, 53(1): 45-53. [22] COLE J B, MANYAMA M, LARSON J R, et al. Human facial shape and size heritability and genetic correlations[J]. Genetics, 2017, 205(2): 967-978. [23] TSAGKRASOULIS D, HYSI P, SPECTOR T, et al. Heritability maps of human face morphology through large-scale automated threedimensional phenotyping[J]. Sci Rep, 2017, 7: 45885. [24] HOSKENS H, LIU D J, NAQVI S, et al. 3D facial phenotyping by biometric sibling matching used in contemporary genomic methodologies [J]. PLoS Genet, 2021, 17(5): e1009528. [25] ADHIKARI K, FUENTES-GUAJARDO M, QUINTO-SÁNCHEZ M, et al. A genome-wide association scan implicates DCHS2, RUNX2, GLI3, PAX1 and EDAR in human facial variation[J]. Nat Commun, 2016, 7: 11616. [26] RICHMOND S, HOWE L J, LEWIS S, et al. Facial genetics: a brief overview[J]. Front Genet, 2018, 9: 462. [27] SMERIGLIO P, ZALC A. Cranial neural crest cells contribution to craniofacial bone development and regeneration[J]. Curr Osteoporos Rep, 2023, 21(5): 624-631. [28] SHULL L C, ARTINGER K B. Epigenetic regulation of craniofacial development and disease[J]. Birth Defects Res, 2024, 116(1): e2271. [29] SHPARGEL K B, MANGINI C L, XIE G J, et al. The KMT2D Kabuki syndrome histone methylase controls neural crest cell differentiation and facial morphology[J]. Development, 2020, 147(21): dev187997. [30] PEZOA S A, ARTINGER K B, NISWANDER L A. GCN5 acetylation is required for craniofacial chondrocyte maturation[J]. Dev Biol, 2020, 464 (1): 24-34. [31] DONG Z J, HE W, LIN G, et al. Histone acetyltransferase KAT2A modulates neural stem cell differentiation and proliferation by inducing degradation of the transcription factor PAX6[J]. J Biol Chem, 2023, 299(3): 103020. [32] CHAROENVICHA C, SIRIMAHARAJ W, KHWANNGERN K, et al. Alterations in DNA methylation in orofacial clefts[J]. Int J Mol Sci, 2022, 23(21): 12727. [33] SHARP G C, HO K, DAVIES A, et al. Distinct DNA methylation profiles in subtypes of orofacial cleft[J]. Clin Epigenetics, 2017, 9: 63. [34] NASREDDINE G, HAJJ J E, GHASSIBE-SABBAGH M. Orofacial clefts embryology, classification, epidemiology, and genetics[J]. Mutat Res Rev Mutat Res, 2021, 787: 108373. [35] MANLOVE A E, ROMEO G, VENUGOPALAN S R. Craniofacial growth: current theories and influence on management[J]. Oral Maxillofac Surg Clin North Am, 2020, 32(2): 167-175. [36] JARUGA A, KSIAZKIEWICZ J, KUZNIARZ K, et al. Orofacial cleft and mandibular prognathism-human genetics and animal models[J]. Int J Mol Sci, 2022, 23(2): 953. [37] SALARI N, DARVISHI N, HEYDARI M, et al. Global prevalence of cleft palate, cleft lip and cleft palate and lip: a comprehensive systematic review and meta-analysis[J]. J Stomatol Oral Maxillofac Surg, 2022, 123(2): 110-120. [38] CARLSON J C, SHAFFER J R, DELEYIANNIS F, et al. Genome-wide interaction study implicates VGLL2 and alcohol exposure and PRL and smoking in orofacial cleft risk[J]. Front Cell Dev Biol, 2022, 10: 621261. [39] YOU Y, SHI J Y, SHI B, et al. Target sequencing reveals the association between variants in VAX1 and NSCL/P in Chinese population[J]. Oral Dis, 2023, 29(5): 2130-2138. [40] DORACZYNSKA-KOWALIK A, NELKE K H, PAWLAK W, et al. Genetic factors involved in mandibular prognathism[J]. J Craniofac Surg, 2017, 28(5): e422-e431. [41] CHEN F S, LI Q, GU M L, et al. Identification of a mutation in FGF23 involved in mandibular prognathism[J]. Sci Rep, 2015, 5: 11250. [42] WEINBERG S M, ROOSENBOOM J, SHAFFER J R, et al. Hunting for genes that shape human faces: initial successes and challenges for the future[J]. Orthod Craniofac Res, 2019, 22(Suppl 1): 207-212. [43] INDENCLEEF K, HOSKENS H, LEE M K, et al. The intersection of the genetic architectures of orofacial clefts and normal facial variation[J]. Front Genet, 2021, 12: 626403. [44] DE LOS CAMPOS G, VAZQUEZ A I, HSU S, et al. Complex-trait prediction in the era of big data[J]. Trends Genet, 2018, 34(10): 746-754. |