[1] NG C K Y, DAZERT E, BOLDANOVA T, et al. Integrative proteogenomic characterization of hepatocellular carcinoma across etiologies and stages[J]. Nat Commun, 2022, 13(1): 2436. [2] GAN W J, WANG J R, ZHU X L, et al. RARγ-induced E-cadherin downregulation promotes hepatocellular carcinoma invasion and metastasis[J]. J Exp Clin Cancer Res, 2016, 35(1): 164. [3] LU J P, FENG J K, ZHAO Y, et al. Grading risk of microvascular invasion impacts survival in hepatocellular carcinoma patients undergoing adjuvant transarterial chemoembolization: a multicenter study[J]. Eur J Surg Oncol, 2025, 51(8): 110102. [4] SHENG X, JI Y, REN G P, et al. A standardized pathological proposal for evaluating microvascular invasion of hepatocellular carcinoma: a multicenter study by LCPGC[J]. Hepatol Int, 2020, 14(6): 1034-1047. [5] WANG W T, GUO Y X, ZHONG J T, et al. The clinical significance of microvascular invasion in the surgical planning and postoperative sequential treatment in hepatocellular carcinoma[J]. Sci Rep, 2021, 11(1): 2415. [6] 中华人民共和国国家卫生健康委员会. 原发性肝癌诊疗指南(2024年版)[J]. 临床肝胆病杂志, 2024, 40(5): 893-918. [7] 李雪梅, 康萌, 万静之, 等. 酒精性肝病中的铁死亡机制研究进展[J]. 癌变·畸变·突变, 2024, 36(1): 66-69, 76. [8] SEITZ H K, STICKEL F. Acetaldehyde as an underestimated risk factor for cancer development: role of genetics in ethanol metabolism[J]. Genes Nutr, 2010, 5(2): 121-128. [9] LIU X Y, LI T T, KONG D L, et al. Prognostic implications of alcohol dehydrogenases in hepatocellular carcinoma[J]. BMC Cancer, 2020, 20(1): 1204. [10] CUI Q H, PENG L N, WEI L X, et al. Genetic variant repressing ADH1A expression confers susceptibility to esophageal squamous-cell carcinoma[J]. Cancer Lett, 2018, 421: 43-50. [11] WANG P, ZHANG L B, HUANG C X, et al. Distinct prognostic values of alcohol dehydrogenase family members for non-small cell lung cancer[J]. Med Sci Monit, 2018, 24: 3578-3590. [12] WILHELM S M, CARTER C, TANG L Y, et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis[J]. Cancer Res, 2004, 64(19): 7099-7109. [13] LLOVET J M, RICCI S, MAZZAFERRO V, et al. Sorafenib in advanced hepatocellular carcinoma[J]. N Engl J Med, 2008, 359(4): 378-390. [14] CHENG A L, KANG Y K, CHEN Z D, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial[J]. Lancet Oncol, 2009, 10(1): 25-34. [15] ZHENG R Q, WENG S, XU J P, et al. Autophagy and biotransformation affect sorafenib resistance in hepatocellular carcinoma[J]. Comput Struct Biotechnol J, 2023, 21: 3564-3574. [16] JIANG Y, SUN A H, ZHAO Y, et al. Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma[J]. Nature, 2019, 567(7747): 257-261. [17] XING X H, HU E, OUYANG J H, et al. Integrated omics landscape of hepatocellular carcinoma suggests proteomic subtypes for precision therapy[J]. Cell Rep Med, 2023, 4(12): 101315. [18] WU R, GUO W B, QIU X Y, et al. Comprehensive analysis of spatial architecture in primary liver cancer[J]. Sci Adv, 2021, 7(51): eabg3750. [19] KUECKELHAUS J, FRERICH S, KADA-BENOTMANE J, et al. Inferring histology-associated gene expression gradients in spatial transcriptomic studies[J]. Nat Commun, 2024, 15: 7280. [20] DUESTER G. Families of retinoid dehydrogenases regulating vitamin A function: production of visual pigment and retinoic acid[J]. Eur J Biochem, 2000, 267(14): 4315-4324. [21] GAO Q, ZHU H W, DONG L Q, et al. Integrated proteogenomic characterization of HBV-related hepatocellular carcinoma[J]. Cell, 2019, 179(5): 1240. [22] ZHAO N, ZHANG Y H, CHENG R F, et al. Spatial maps of hepatocellular carcinoma transcriptomes highlight an unexplored landscape of heterogeneity and a novel gene signature for survival[J]. Cancer Cell Int, 2022, 22(1): 57. [23] üNAL E, İDILMAN İ S, AKATA D, et al. Microvascular invasion in hepatocellular carcinoma[J]. Diagn Interv Radiol, 2016, 22(2): 125-132. [24] ZAHID K R, YAO S, KHAN A R R, et al. mTOR/HDAC1 crosstalk mediated suppression of ADH1A and ALDH2 links alcohol metabolism to hepatocellular carcinoma onset and progression in silico[J]. Front Oncol, 2019, 9: 1000. [25] CHRISTOU C, STYLIANOU A, GKRETSI V. Midkine (MDK) in hepatocellular carcinoma: more than a biomarker[J]. Cells, 2024, 13(2): 136. [26] OMRAN M M, FARID K, OMAR M A, et al. A combination of α-fetoprotein, midkine, thioredoxin and a metabolite for predicting hepatocellular carcinoma[J]. Ann Hepatol, 2020, 19(2): 179-185. [27] ZHAO S, LI H D, WANG Q J, et al. The role of c-Src in the invasion and metastasis of hepatocellular carcinoma cells induced by association of cell surface GRP78 with activated α2M[J]. BMC Cancer, 2015, 15: 389. [28] GNANI D, ROMITO I, ARTUSO S, et al. Focal adhesion kinase depletion reduces human hepatocellular carcinoma growth by repressing enhancer of zeste homolog 2[J]. Cell Death Differ, 2017, 24(5): 889-902. [29] YOON J W, KIM K M, CHO S, et al. Th1-poised naive CD4 T cell subpopulation reflects anti-tumor immunity and autoimmune disease[J]. Nat Commun, 2025, 16(1): 1962. [30] ALI E, -ERVENKOVÁ L, PÁLEK R, et al. Prognostic role of macrophages and mast cells in the microenvironment of hepatocellular carcinoma after resection[J]. BMC Cancer, 2024, 24(1): 142. [31] PINTO M L, RIOS E, DUR-ES C, et al. The two faces of tumor-associated macrophages and their clinical significance in colorectal cancer[J]. Front Immunol, 2019, 10: 1875. [32] GRIZZI F. Mast cells and human hepatocellular carcinoma[J]. World J Gastroenterol, 2003, 9(7): 1469. [33] ROHR-UDILOVA N, TSUCHIYA K, TIMELTHALER G, et al. Morphometric analysis of mast cells in tumor predicts recurrence of hepatocellular carcinoma after liver transplantation[J]. Hepatol Commun, 2021, 5(11): 1939-1952. |