[1] 韩见,陈其慎,杨雪松,等.钴资源现状及未来5—10年供需形势分析[J].中国地质,2023, 50(3): 743-755. [2] JIANG M, WANG K, WANG Y P, et al. Technologies for the cobalt-contaminated soil remediation: a review[J]. Sci Total Environ, 2022, 813: 151908. [3] LEYSSENS L, VINCK B, VAN DER STRAETEN C, et al. Cobalt toxicity in humans: a review of the potential sources and systemic health effects[J]. Toxicology, 2017, 387: 43-56. [4] BALACHANDRAN S, ZACHARIAH Z, FISCHER A, et al. Atomic scale origin of metal ion release from hip implant taper junctions[J]. Adv Sci, 2020, 7(5): 1903008. [5] GARCIA M D, HUR M, CHEN J J, et al. Cobalt toxic optic neuropathy and retinopathy: Case report and review of the literature[J]. Am J Ophthalmol Case Rep, 2020, 17: 100606. [6] GUAN D S, SU Y F, LI Y X, et al. Tetramethylpyrazine inhibits CoCl2-induced neurotoxicity through enhancement of Nrf2/ GCLc/GSH and suppression of HIF1α/NOX2/ROS pathways[J]. J Neurochem, 2015, 134(3): 551-565. [7] LEE H G, WHEELER M A, QUINTANA F J. Function and therapeutic value of astrocytes in neurological diseases[J]. Nat Rev Drug Discov, 2022, 21(5): 339-358. [8] VANGEISON G, REMPE D A. The Janus-faced effects of hypoxia on astrocyte function[J]. Neuroscientist, 2009, 15(6): 579-588. [9] SIMONSEN L O, HARBAK H, BENNEKOU P. Cobalt metabolism and toxicology: a brief update[J]. Sci Total Environ, 2012, 432: 210-215. [10] AJIBO D N, ORISH C N, RUGGIERI F, et al. An update overview on mechanistic data and biomarker levels in cobalt and chromium-induced neurodegenerative diseases[J]. Biol Trace Elem Res, 2024, 202(8): 3538-3564. [11] BANZA LUBABA NKULU C, CASAS L, HAUFROID V, et al. Sustainability of artisanal mining of cobalt in DR Congo[J]. Nat Sustain, 2018, 1(9): 495-504. [12] JORDAN C M, WHITMAN R D, HARBUT M. Memory deficits and industrial toxicant exposure: a comparative study of hard metal, solvent and asbestos workers[J]. Int J Neurosci, 1997, 90(1/2): 113-128. [13] TOWER S S. Arthroprosthetic cobaltism associated with metal on metal hip implants[J]. Bmj, 2012, 344(jan173): e430. [14] ZHENG F L, LI Y Q, ZHANG F S, et al. Cobalt induces neurodegenerative damages through Pin1 inactivation in mice and human neuroglioma cells[J]. J Hazard Mater, 2021, 419: 126378. [15] CLARK M J, PRENTICE J R, HOGGARD N, et al. Brain structure and function in patients after metal-on-metal hip resurfacing[J]. Am J Neuroradiol, 2014, 35(9): 1753-1758. [16] IVAN M, KAELIN W G Jr. The EGLN-HIF O2-sensing system: multiple inputs and feedbacks[J]. Mol Cell, 2017, 66(6): 772-779. [17] MUÑOZ-SÁNCHEZ J, CHÁNEZ-CÁRDENAS M E. The use of cobalt chloride as a chemical hypoxia model[J]. J Appl Toxicol, 2019, 39(4): 556-570. [18] SALNIKOW K, DONALD S P, BRUICK R K, et al. Depletion of intracellular ascorbate by the carcinogenic metals nickel and cobalt results in the induction of hypoxic stress[J]. J Biolog Chem, 2004, 279(39), 40337-40344. [19] LEE J H, CHOI S H, BAEK M W, et al. CoCl2 induces apoptosis through the mitochondria- and death receptormediated pathway in the mouse embryonic stem cells[J]. Mol Cell Biochem, 2013, 379(1): 133-140. [20] LÓPEZ-HERNÁNDEZ B, CEÑA V, POSADAS I. The endoplasmic reticulum stress and the HIF-1 signalling pathways are involved in the neuronal damage caused by chemical hypoxia [J]. British J Pharmacology, 2015, 172(11): 2838-2851. [21] TANG J P, LI Y J, LIU X, et al. Cobalt induces neurodegenerative damages through impairing autophagic flux by activating hypoxia-inducible factor-1α triggered ROS overproduction[J]. Sci Total Environ, 2023, 857: 159432. [22] GÖTZ M, HUTTNER W B. The cell biology of neurogenesis[J]. Nat Rev Mol Cell Biol, 2005, 6(10): 777-788. [23] NIETO-ESTÉVEZ V, DEFTERALI Ç, VICARIO-ABEJÓN C. IGF-I: a key growth factor that regulates neurogenesis and synaptogenesis from embryonic to adult stages of the brain[J]. Front Neurosci, 2016, 10: 52. [24] ORTEGA J A, SIROIS C L, MEMI F N, et al. Oxygen levels regulate the development of human cortical radial Glia Cells[J]. Cereb Cortex, 2016, 27(7): 3736-3751. [25] PA?CA A M, PARK J Y, SHIN H W, et al. Human 3D cellular model of hypoxic brain injury of prematurity[J]. Nat Med, 2019, 25(5): 784-791. [26] CHAVEZ J C, BARANOVA O, LIN J, et al. The transcriptional activator hypoxia inducible factor 2(HIF-2/EPAS-1) regulates the oxygen-dependent expression of erythropoietin in cortical astrocytes[J]. J Neurosci, 2006, 26(37): 9471-9481. [27] HU Y, ZHANG M, LIU B H, et al. Honokiol prevents chronic cerebral hypoperfusion induced astrocyte A1 polarization to alleviate neurotoxicity by targeting SIRT3-STAT3 axis[J]. Free Radic Biol Med, 2023, 202: 62-75. [28] ORIA R S, ANYANWU G E, ESOM E A, et al. Modulatory role of curcumin on cobalt-induced memory deficit, hippocampal oxidative damage, astrocytosis, and Nrf2 expression[J]. Neurotox Res, 2023, 41(3): 201-211. [29] HUANG Y, DAI Y P, LI M, et al. Exposure to cadmium induces neuroinflammation and impairs ciliogenesis in hESCderived 3D cerebral organoids[J]. Sci Total Environ, 2021, 797: 149043. [30] HUANG Y, GUO X H, LU S Y, et al. Long-term exposure to cadmium disrupts neurodevelopment in mature cerebral organoids[J]. Sci Total Environ, 2024, 912: 168923. |