Carcinogenesis, Teratogenesis & Mutagenesis ›› 2023, Vol. 35 ›› Issue (3): 231-235,239.doi: 10.3969/j.issn.1004-616x.2023.03.014
1
Received:
2022-06-25
Revised:
2023-04-12
Published:
2023-06-03
CLC Number:
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] CRUZAT V, MACEDO ROGERO M, NOEL KEANE K, et al. Glutamine:metabolism and immune function, supplementation and clinical translation[J]. Nutrients, 2018, 10(11):1564. [2] ALTMAN B J, STINE Z E, DANG C V. From Krebs to clinic:glutamine metabolism to cancer therapy[J]. Nat Rev Cancer, 2016, 16(10):619-634. [3] SHANG M, CAPPELLESSO F, AMORIM R, et al. Macrophage-derived glutamine boosts satellite cells and muscle regeneration[J]. Nature, 2020, 587(7835):626-631. [4] WAELE E D, MALBRAIN M L N G, SPAPEN H. Nutrition in Sepsis:a bench-to-bedside review[J]. Nutrients, 2020, 12(2):395. [5] WISCHMEYER P E. Glutamine in burn injury[J]. Nutr Clin Pract, 2019, 34(5):681-687. [6] 牟彬, 周小秋, 林燕. 谷氨酰胺对免疫细胞的影响研究进展[J]. 动物营养学报, 2007, 19(S1):487-491. [7] CHAMBERS J W, MAGUIRE T G, ALWINE J C. Glutamine metabolism is essential for human cytomegalovirus infection[J]. J Virol, 2010, 84(4):1867-1873. [8] PARRY-BILLINGS M, EVANS J, CALDER P C, et al. Does glutamine contribute to immunosuppression after major burns-[J]. Lancet, 1990, 336(8714):523-525. [9] VAN ZANTEN A R, DHALIWAL R, GARREL D, et al. Enteral glutamine supplementation in critically ill patients:a systematic review and meta-analysis[J]. Crit Care, 2015, 19(1):294. [10] SCALISE M, POCHINI L, GALLUCCIO M, et al. Glutamine transporters as pharmacological targets:from function to drug design[J]. Asian J Pharm Sci, 2020, 15(2):207-219. [11] NEWSHOLME E A, CRABTREE B, ARDAWI M S M. Glutamine metabolism in lymphocytes:its biochemical, physiological and clinical importance[J]. Q J Exp Physiol, 1985, 70(4):473-489. [12] MAK T W, GRUSDAT M, DUNCAN G S, et al. Glutathione primes T cell metabolism for inflammation[J]. Immunity, 2017, 46(6):1089-1090. [13] 徐菱, 焦贤飚, 许孙红, 等. CB-839通过抑制谷氨酰胺代谢对巨噬细胞向M1型极化的影响[J]. 药学服务与研究, 2022, 22(1):13-17, 23. [14] XIAO W H, CHEN P J, DONG J M, et al. Dietary glutamine supplementation partly reverses impaired macrophage function resulting from overload training in rats[J]. Int J Sport Nutr Exerc Metab, 2015, 25(2):179-187. [15] LIU P S, WANG H P, LI X Y, et al. α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming[J]. Nat Immunol, 2017, 18(9):985-994. [16] FU Q, XU L, WANG Y W, et al. Tumor-associated macrophage-derived interleukin-23 interlinks kidney cancer glutamine addiction with immune evasion[J]. Eur Urol, 2019, 75(5):752-763. [17] PETRUS P, LECOUTRE S, DOLLET L, et al. Glutamine links obesity to inflammation in human white adipose tissue[J]. Cell Metab, 2020, 31(2):375-390. [18] JONES N, BLAGIH J, ZANI F, et al. Fructose reprogrammes glutamine-dependent oxidative metabolism to support LPS-induced inflammation[J]. Nat Commun, 2021, 12(1):1209. [19] PALMIERI E M, MENGA A, MARTÍN-PÉREZ R, et al. Pharmacologic or genetic targeting of glutamine synthetase skews macrophages toward an M1-like phenotype and inhibits tumor metastasis[J]. Cell Rep, 2017, 20(7):1654-1666. [20] WANG J Y, ZHOU J H, BAI S C. Combination of glutamine and ulinastatin treatments greatly improves Sepsis outcomes[J]. J Inflamm Res, 2020, 13:109-115. [21] RAMEZANI AHMADI A, RAYYANI E, BAHREINI M, et al. The effect of glutamine supplementation on athletic performance, body composition, and immune function:a systematic review and a meta-analysis of clinical trials[J]. Clin Nutr, 2019, 38(3):1076-1091. [22] KIM J M, IM Y N, CHUNG Y J, et al. Glutamine deficiency shifts the asthmatic state toward neutrophilic airway inflammation[J]. Allergy, 2022, 77(4):1180-1191. [23] INJARABIAN L, DEVIN A, RANSAC S, et al. Neutrophil metabolic shift during their lifecycle:impact on their survival and activation[J]. Int J Mol Sci, 2019, 21(1):287. [24] NAKAYA M, XIAO Y C, ZHOU X F, et al. Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation[J]. Immunity, 2014, 40(5):692-705. [25] BYUN J K, PARK M, LEE S, et al. Inhibition of glutamine utilization synergizes with immune checkpoint inhibitor to promote antitumor immunity[J]. Mol Cell, 2020, 80(4):592-606. [26] JOHNSON M O, WOLF M M, MADDEN M Z, et al. Distinct regulation of Th17 and Th1 cell differentiation by glutaminase-dependent metabolism[J]. Cell, 2018, 175(7):1780-1795. [27] KLYSZ D, TAI X G, ROBERT P A, et al. Glutamine-dependent α-ketoglutarate production regulates the balance between T helper 1 cell and regulatory T cell generation[J]. Sci Signal, 2015, 8(396):ra97. [28] CLERC I, MOUSSA D A, VAHLAS Z, et al. Entry of glucose- and glutamine-derived carbons into the citric acid cycle supports early steps of HIV-1 infection in CD4 T cells[J]. Nat Metab, 2019, 1(7):717-730. [29] KOEKEN V A C M, LACHMANDAS E, RIZA A, et al. Role of glutamine metabolism in host defense against Mycobacterium tuberculosis infection[J]. J Infect Dis, 2019, 219(10):1662-1670. [30] MOHAJERI M, HORRIATKHAH E, MOHAJERY R. The effect of glutamine supplementation on serum levels of some inflammatory factors, oxidative stress, and appetite in COVID-19 patients:a case-control study[J]. Inflammopharmacology, 2021, 29(6):1769-1776. [31] NAME J J, VASCONCELOS A R, SOUZA A C R, et al. Vitamin D, zinc and glutamine:Synergistic action with OncoTherad immunomodulator in interferon signaling and COVID-19(Review)[J]. Int J Mol Med, 2021, 47(3):11. [32] SUMBRIA D, BERBER E, MILLER L, et al. Modulating glutamine metabolism to control viral immuno-inflammatory lesions[J]. Cell Immunol, 2021, 370:104450. [33] LÉVY P L, DUPONCHEL S, EISCHEID H, et al. Hepatitis C virus infection triggers a tumor-like glutamine metabolism[J]. Hepatology, 2017, 65(3):789-803. [34] HOU Y C, WU J M, CHEN K Y, et al. Effects of prophylactic administration of glutamine on CD4+ T cell polarisation and kidney injury in mice with polymicrobial sepsis[J]. Br J Nutr, 2019, 122(6):657-665. [35] SU L H, LIN M T, YEH S L, et al. Glutamine administration attenuates kidney inflammation in obese mice complicated with polymicrobial Sepsis[J]. Mediators Inflamm, 2021, 2021:5597118. [36] HUANG J, LIU J, CHANG G J, et al. Glutamine supplementation attenuates the inflammation caused by LPS-induced acute lung injury in mice by regulating the TLR4/MAPK signaling pathway[J]. Inflammation, 2021, 44(6):2180-2192. [37] MOSCARDINI F I, LUIZ R S. Evaluation of sepsis treatment with enteral glutamine in rats[J]. Revista Do Colegio Brasileiro De Cirurgioes, 2017, 44(3):231-237. [38] 袁媛, 王学敏, 薛瑛, 等. 谷氨酰胺对脓毒症小鼠的保护作用[J]. 上海医学, 2009, 32(1):58-61. [39] 何琦, 卢冬雪. 谷氨酰胺联合乌司他丁治疗ICU脓毒症患者的效果[J]. 中国民康医学, 2021, 33(4):47-49. [40] 潘莉, 陆国玉, 王方莉, 等. 谷氨酰胺联合益生菌早期肠内营养治疗对泌尿系统感染所致脓毒症患者预后的影响[J]. 中国医学前沿杂志:电子版, 2020, 12(3):138-141. [41] PAI M H, WU J M, YANG P J, et al. Antecedent dietary glutamine supplementation benefits modulation of liver pyroptosis in mice with polymicrobial Sepsis[J]. Nutrients, 2020, 12(4):1086. [42] BLAAUW R, NEL D G, SCHLEICHER G K. Plasma glutamine levels in relation to intensive care unit patient outcome[J]. Nutrients, 2020, 12(2):402. [43] SMEDBERG M, HELLEBERG J, NORBERG Å, et al. Plasma glutamine status at intensive care unit admission:an independent risk factor for mortality in critical illness[J]. Crit Care, 2021, 25(1):240. [44] HU J C, WANG T C, XU J, et al. WEE1 inhibition induces glutamine addiction in T-cell acute lymphoblastic leukemia[J]. Haematologica, 2021, 106(7):1816-1827. [45] NAJUMUDEEN A K, CETECI F, FEY S K, et al. The amino acid transporter SLC7A5 is required for efficient growth of KRAS-mutant colorectal cancer[J]. Nat Genet, 2021, 53(1):16-26. [46] LEONE R D, ZHAO L, ENGLERT J M, et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion[J]. Science, 2019, 366(6468):1013-1021. [47] EDWARDS D N, NGWA V M, RAYBUCK A L, et al. Selective glutamine metabolism inhibition in tumor cells improves antitumor T lymphocyte activity in triple-negative breast cancer[J]. J Clin Invest, 2021, 131(4):e140100. [48] NABE S, YAMADA T, SUZUKI J, et al. Reinforce the antitumor activity of CD8+ T cells via glutamine restriction[J]. Cancer Sci, 2018, 109(12):3737-3750. [49] OH M H, SUN I H, ZHAO L, et al. Targeting glutamine metabolism enhances tumor-specific immunity by modulating suppressive myeloid cells[J]. J Clin Invest, 2020, 130(7):3865-3884. [50] YANG T, YAN X H, CAO Y B, et al. Meta-analysis of glutamine on immune function and post-operative complications of patients with colorectal cancer[J]. Front Nutr, 2021, 8:765809. |
[1] | . [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2022, 34(5): 395-399. |
[2] | LI Min, HE Ning, ZHANG Dalong, GUAN Tong, QIAN Zhiyong. Sub-chronic toxicity of polyphenol and polysaccharid extracts from Areca catechu in Wistar rats [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2022, 34(4): 307-313,317. |
[3] | TIAN Xiaolin, YANG Lingling, ZHAO Qian, CHOU Yulan, SUN Zilong, NIU Ruiyan, YAN Xiaoyan. Effects of fluoride and arsenic alone and combined exposures on nephrotoxicity and autophagy in offspring rats [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2022, 34(3): 169-177. |
[4] | LIU Xiaoning, GENG Qiang, XU Jiangyao, LIN Guimiao, WANG Xiaomei, GUO Suiqun. Cytotoxic effects of CuInS2/ZnS quantum dots on human ovarian granulosa cells [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2022, 34(3): 206-212,232. |
[5] | JIANG Xiaoyan, YAN Dong, HE Yingxue, FAN Li, LIANG Chenqing. [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2022, 34(3): 237-241. |
[6] | LIU Jianxin, MA Yuhong, HAO Weidong. Effects of sub-chronic exposure to cerium nitrate on neurobehavioral functions in SD rats [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2022, 34(2): 81-87. |
[7] | LI Xinwei, WANG Quankai, MA Shunpeng, WANG Miao, WUHAN Baolier, GU Yiting, KANG Tongying, XU Jianning. Long non-coding RNA expression analysis and ceRNA regulatory network in glycidyl methacrylate-induced malignant transformation of 16HBE cells [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2022, 34(1): 1-6. |
[8] | XIA Qiyue, YUE Qianlan, DOU Jiexiong, ZHUANG Siqi, LIU Keliang. Toxicological test of orally administered sodium sulfide in rats [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2022, 34(1): 62-66. |
[9] | . [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2022, 34(1): 79-81. |
[10] | LI Hongwei, KONG Deqin, YU Weihua, WU Hao, WANG Zhao, LIU Rui, HAI Chunxu, WANG Xin, LIU Jiangzheng, LI Wenli. Protective effect of oleanolic acid co-treatment on alcohol-induced oxidative damage in gastric mucosa of rats [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2021, 33(5): 365-369. |
[11] | WANG Jiamin, LIU Jianxin, MENG Qinghe, HAO Weidong. Sub-chronic exposure to yttrium nitrate on learning and memory functions in female rats [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2021, 33(4): 255-261. |
[12] | LI Mei, SU Jiakun, YIN Jingjing, XU Da, QIN Xiujun, AN Quan, CAI Jibao. Effects of 30-day smoke exposure on gene expression profile in hearts of rats [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2021, 33(4): 291-295. |
[13] | XIANG Jiaqi, SUN Jiali, WANG Chengfang, LIU Qingjie, TIAN Mei. Analyses of label-free quantitative proteomics on rat urine after 60Co γ ray irradiation [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2021, 33(3): 172-177,192. |
[14] | LI Chen, TIAN Mei, QI Xuesong, WANG Chunyan, QU Gonglin, SHAO Shuai, WANG Chengfang, GOU Qiao. Induction of pyroptosis by X-rays in human umbilical vein endothelial cells [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2021, 33(2): 89-94. |
[15] | . [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2021, 33(2): 149-152. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||