[1] 汤梓莹, 邓明港, 宇传华, 等. 中国卵巢癌疾病负担现状及趋势分析[J]. 国际妇产科学杂志, 2022, 49(2): 222-227. [2] SCHOUTROP E, EL-SERAFI I, POIRET T, et al. Mesothelinspecific CAR T cells target ovarian cancer[J]. Cancer Res, 2021, 81(11): 3022-3035. [3] CHARDIN L, LEARY A. Immunotherapy in ovarian cancer: thinking beyond PD-1/PD-L1[J]. Front Oncol, 2021, 11: 795547. [4] ZHANG W J. Effect of P2X purinergic receptors in tumor progression and as a potential target for anti-tumor therapy[J]. Purinergic Signal, 2021, 17(1): 151-162. [5] AKHTARI M, ZARGAR S J, VOJDANIAN M, et al. P2 receptors mRNA expression profiles in macrophages from ankylosing spondylitis patients and healthy individuals[J]. Int J Rheum Dis, 2020, 23(3): 350-357. [6] HUANG Z, LIU P, ZHU L, et al. P2X1-initiated p38 signalling enhances thromboxane A2-induced platelet secretion and aggregation[J]. Thromb Haemost, 2014, 112(1): 142-150. [7] LECUT C, FACCINETTO C, DELIERNEUX C, et al. ATPgated P2X1 ion channels protect against endotoxemia by dampening neutrophil activation[J]. J Thromb Haemost, 2012, 10(3): 453-465. [8] YANG X J, LU B, SUN X Q, et al. ANP32A regulates histone H3 acetylation and promotes leukemogenesis[J]. Leukemia, 2018, 32(7): 1587-1597. [9] WANG X, HU L P, QIN W T, et al. Identification of a subset of immunosuppressive P2RX1-negative neutrophils in pancreatic cancer liver metastasis[J]. Nat Commun, 2021, 12(1): 174. [10] AUDRITO V. Pancreatic cancer immune evasion mechanisms: the immunosuppressive role of P2RX1-negative neutrophils[J]. Purinergic Signal, 2021, 17(2): 173-174. [11] 于运亮, 封建凯, 姜杰, 等. 宫颈癌中P2RX1的表达与肿瘤浸润的相关性分析[J]. 标记免疫分析与临床, 2022, 29(2): 301-308, 348. [12] 于运亮, 王莉莉, 李婷, 等. 嘌呤能受体 X1 与肺腺癌预后及免疫细胞浸润的相关性研究[J]. 癌变·畸变·突变, 2022, 34(5): 353-360, 365. [13] ARAN D, HU Z C, BUTTE A J. xCell: digitally portraying the tissue cellular heterogeneity landscape[J]. Genome Biol, 2017, 18(1): 220. [14] YANG Y X, LIU L, GUO Z W, et al. Investigation and assessment of neutrophil dysfunction early after severe burn injury[J]. Burns, 2021, 47(8): 1851-1862. [15] XU Y Y, ZOU B, FAN B J, et al. NcRNAs-mediated P2RX1 expression correlates with clinical outcomes and immune infiltration in patients with breast invasive carcinoma[J]. Aging, 2022, 14(10): 4471-4485. [16] 向雨, 张泽宇, 辛华. 趋化因子及其受体对卵巢癌发生发展的作用的研究进展[J]. 广东化工, 2020, 47(9): 129-130. [17] ANADON C M, YU X Q, HÄNGGI K, et al. Ovarian cancer immunogenicity is governed by a narrow subset of progenitor tissue-resident memory Tcells[J]. Cancer Cell, 2022, 40(5): 545-557.e13. [18] PAUTU J L, KUMAR L. Intratumoral T cells and survival in epithelial ovarian cancer[J]. Natl Med J India, 2003, 16(3): 150-151. [19] WAN C X, KEANY M P, DONG H, et al. Enhanced efficacy of simultaneous PD-1 and PD-L1 immune checkpoint blockade in high-grade serous ovarian cancer[J]. Cancer Res, 2021, 81(1): 158-173. [20] WANG L, SUN W J, ZHANG G A, et al. T-cell activation is associated with high-grade serous ovarian cancer survival[J]. J Obstet Gynaecol Res, 2022, 48(8): 2189-2197. [21] KUMAGAI S, TOGASHI Y, KAMADA T, et al. The PD-1 expression balance between effector and regulatory T cells predicts the clinical efficacy of PD-1 blockade therapies[J]. Nat Immunol, 2020, 21(11): 1346-1358. [22] 马驰, 林玲, 胡敏, 等. 肿瘤微环境与卵巢癌耐药的研究进展[J]. 吉林医学, 2018, 39(8): 1557-1560. [23] SCHREIBER R D, OLD L J, SMYTH M J. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion[J]. Science, 2011, 331(6024): 1565-1570. [24] JIANG P, GU S Q, PAN D, et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response[J]. Nat Med, 2018, 24(10): 1550-1558. |