[1] GOMES D F, MOREIRA R A, SANCHES N A O, et al. Dynamics of (total and methyl) mercury in sediment, fish, and crocodiles in an Amazonian Lake and risk assessment of fish consumption to the local population[J]. Environ Monit Assess, 2020, 192(2):1-10. [2] 张泓, 刘建文, 颜崇淮. 二十二碳六烯酸(DHA)对甲基汞神经毒性的保护效应及机制研究进展[J]. 环境与职业医学, 2020, 37(2):187-191. [3] ANTUNES DOS SANTOS A, APPEL HORT M, CULBRETH M, et al. Methylmercury and brain development:a review of recent literature[J]. J Trace Elem Med Biol, 2016, 38:99-107. [4] HARADA M. Minamata disease:methylmercury poisoning in Japan caused by environmental pollution[J]. Crit Rev Toxicol, 1995, 25(1):1-24. [5] STRINGARI J, NUNES A K, FRANCO J L, et al. Prenatal methylmercury exposure hampers glutathione antioxidant system ontogenesis and causes long-lasting oxidative stress in the mouse brain[J]. Toxicol Appl Pharmacol, 2008, 227(1):147-154. [6] LIU W, YANG T Y, XU Z F, et al. Methyl-mercury induces apoptosis through ROS-mediated endoplasmic Reticulum stress and mitochondrial apoptosis pathways activation in rat cortical neurons[J]. Free Radic Res, 2019, 53(1):26-44. [7] MAILLOUX R J, YUMVIHOZE E, CHAN H M. Superoxide produced in the matrix of mitochondria enhances methylmercury toxicity in human neuroblastoma cells[J]. Toxicol Appl Pharmacol, 2015, 289(3):371-380. [8] KRISHNA CHANDRAN A M, CHRISTINA H, DAS S, et al. Neuroprotective role of naringenin against methylmercury induced cognitive impairment and mitochondrial damage in a mouse model[J]. Environ Toxicol Pharmacol, 2019, 71:103224. [9] CID-CASTRO C, HERNÁNDEZ-ESPINOSA D R, MORÁN J. ROS as regulators of mitochondrial dynamics in neurons[J]. Cell Mol Neurobiol, 2018, 38(5):995-1007. [10] 邱财荣, 周柏玉, 吴中亮. 谷氨酸及其受体在海马学习记忆中的作用研究现状[J]. 神经解剖学杂志, 2016, 32(4):529-531. [11] YANG T Y, XU Z F, LIU W, et al. Alpha-lipoic acid protects against methylmercury-induced neurotoxic effects via inhibition of oxidative stress in rat cerebral cortex[J]. Environ Toxicol Pharmacol, 2015, 39(1):157-166. [12] BEATTIE E C, CARROLL R C, YU X, et al. Regulation of AMPA receptor endocytosis by a signaling mechanism shared with LTD[J]. Nat Neurosci, 2000, 3(12):1291-1300. [13] KRITIS A A, STAMOULA E G, PANISKAKI K A, et al. Researching glutamate-induced cytotoxicity in different cell lines:a comparative/collective analysis/study[J]. Front Cell Neurosci, 2015, 9:91. [14] 王欣梅, 曹贤文, 刘雯君, 等. 甲基汞对不同发育期大鼠学习记忆的影响及氧化损伤作用[J]. 毒理学杂志, 2014, 28(1):15-18. [15] RAMDIAL K, FRANCO M C, ESTEVEZ A G. Cellular mechanisms of peroxynitrite-induced neuronal death[J]. Brain Res Bull, 2017, 133:4-11. [16] REN X, ZOU L, ZHANG X, et al. Redox signaling mediated by thioredoxin and glutathione systems in the central nervous system[J]. Antioxid Redox Signal, 2017, 27(13):989-1010. [17] 刘巍, 徐兆发, 杨天瑶, 等. 茶多酚对甲基汞致大鼠脑皮质神经元钙超载及N-甲基-D-天冬氨酸受体异常表达的拮抗作用[J]. 环境与健康杂志, 2016, 33(1):23-27. [18] 王欣梅, 刘雯君, 周宜开. 甲基汞暴露对出生后大鼠学习记忆及NMDA受体表达的影响[J]. 环境与职业医学, 2012, 29(1):27-30. [19] DIXON S J, LEMBERG K M, LAMPRECHT M R, et al. Ferroptosis:an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5):1060-1072. [20] FORCINA G C, DIXON S J. GPX4 at the crossroads of lipid homeostasis and ferroptosis[J]. Proteomics, 2019, 19(18):1800311. [21] ZEMOLIN A P, MEINERZ D F, DE PAULA M T, et al. Evidences for a role of glutathione peroxidase 4(GPx4) in methylmercury induced neurotoxicity in vivo[J]. Toxicology, 2012, 302(1):60-67. [22] CAO J Y, DIXON S J. Mechanisms of ferroptosis[J]. Cell Mol Life Sci, 2016, 73(11/12):2195-2209. [23] YANG B, YIN C, ZHOU Y, et al. Curcumin protects against methylmercury-induced cytotoxicity in primary rat astrocytes by activating the Nrf2/ARE pathway independently of PKCδ[J]. Toxicology, 2019, 425:152248. [24] 张立梅, 郑勤琴, 曲伟杰, 等. 内质网自噬的研究进展[J]. 生理科学进展, 2020, 51(1):41-46. [25] 彭瀚琦, 刘栎, 曹玉函, 等. 自噬在肝脏脂质代谢中的作用途径[J]. 生理科学进展, 2019, 50(6):429-433. [26] CHANG S H, LEE H J, KANG B, et al. Methylmercury induces caspase-dependent apoptosis and autophagy in human neural stem cells[J]. J Toxicol Sci, 2013, 38(6):823-831. [27] 常洪泽, 刘晓东. Nrf2/Keap1/ARE信号通路和髓核细胞自噬的研究进展[J]. 医学综述, 2019, 25(18):3567-3572. [28] ZHANG Z, MIAH M, CULBRETH M, et al. Autophagy in neurodegenerative diseases and metal neurotoxicity[J]. Neurochem Res, 2016, 41(1/2):409-422. [29] FANG Y T, GUO C J, ZHANG P P, et al. Role of autophagy in methylmercury-induced neurotoxicity in rat primary astrocytes[J]. Arch Toxicol, 2016, 90(2):333-345. [30] LIN T, RUAN S, HUANG D, et al. MeHg-induced autophagy via JNK/Vps34 complex pathway promotes autophagosome accumulation and neuronal cell death[J]. Cell Death Dis, 2019, 10(6):399. [31] TOYAMA T, SUMI D, SHINKAI Y, et al. Cytoprotective role of Nrf2/Keap1 system in methylmercury toxicity[J]. Biochem Biophys Res Commun, 2007, 363(3):645-650. [32] YANG B, YIN C, ZHOU Y, et al. Curcumin protects against methylmercury-induced cytotoxicity in primary rat astrocytes by activating the Nrf2/ARE pathway independently of PKCδ[J]. Toxicology, 2019, 425:152248. [33] 高丹丹, 陈丽军, 续薇. 自噬受体蛋白p62与Keap1-Nrf2信号通路在肿瘤中的研究进展[J]. 临床检验杂志, 2019, 37(5):377-379. [34] UNOKI T, AKIYAMA M, KUMAGAI Y, et al. Molecular pathways associated with methylmercury-induced Nrf2 modulation[J]. Front Genet, 2018, 9:373. [35] IANOV L, DE BOTH M, CHAWLA M K, et al. Hippocampal transcriptomic profiles:subfield vulnerability to age and cognitive impairment[J]. Front Aging Neurosci, 2017, 9:383. [36] BARTER J D, FOSTER T C. Aging in the brain:new roles of epigenetics in cognitive decline[J]. Neuroscientist, 2018, 24(5):516-525. [37] LI Y J, SHEN M, JIN C, et al. Regulation of ferroptosis by ncRNA:a new direction[J]. IUBMB Life, 2020, 72(11):2290-2302. [38] ZHANG H, HE Y, WANG J X, et al. miR-30-5p-mediated ferroptosis of trophoblasts is implicated in the pathogenesis of preeclampsia[J]. Redox Biol, 2020, 29:101402. [39] LUBIN F D, ROTH T L, SWEATT J D. Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory[J]. J Neurosci, 2008, 28(42):10576-10586. [40] GO S, KURITA H, MATSUMOTO K, et al. Methylmercury causes epigenetic suppression of the tyrosine hydroxylase gene in an in vitro neuronal differentiation model[J]. Biochem Biophys Res Commun, 2018, 502(4):435-441. |