[1] BIENER L, PIZARRO C, SKOWASCH D. Chronic obstructive pulmonary disease (COPD): eosinophilia and novel drug therapies[J]. Inn Med, 2024, 65(7): 738-745. [2] GROSS P, PFITZER E A, TOLKER E, et al. Experimental emphysema: its production with papain in normal and silicotic rats[J]. Arch Environ Health, 1965, 11: 50-58. [3] TARASEVICIENE-STEWART L, SCERBAVICIUS R, CHOE K H, et al. An animal model of autoimmune emphysema[J]. Am J Respir Crit Care Med, 2005, 171(7): 734-742. [4] VIVARELLI F, CANISTRO D, CIRILLO S, et al. Unburned tobacco cigarette smoke alters rat ultrastructural lung airways and DNA[J]. Nicotine Tob Res, 2021, 23(12): 2127-2134. [5] KIM Y S, HONG G, KIM D H, et al. The role of FGF-2 in smoke-induced emphysema and the therapeutic potential of recombinant FGF-2 in patients with COPD[J]. Exp Mol Med, 2018, 50(11): 1-10. [6] CHEN J, DAI L Q, WANG T, et al. The elevated CXCL5 levels in circulation are associated with lung function decline in COPD patients and cigarette smoking-induced mouse model of COPD[J]. Ann Med, 2019, 51(5/6): 314-329. [7] WANG K, LIAO Y, LI X O, et al. Inhibition of neutrophil elastase prevents cigarette smoke exposure-induced formation of neutrophil extracellular traps and improves lung function in a mouse model of chronic obstructive pulmonary disease[J]. Int Immunopharmacol, 2023, 114: 109537. [8] BAARSMA H A, VAN DER VEEN C H T J, LOBEE D, et al. Epithelial 3D-spheroids as a tool to study air pollutant-induced lung pathology[J]. SLAS Discov, 2022, 27(3): 185-190. [9] BERI P, WOO Y J, SCHIERENBECK K, et al. A high-throughput cigarette smoke-treated bronchosphere model for disease-relevant phenotypic compound screening[J]. PLoS One, 2023, 18(6): e0287809. [10] LIN X, LI Y J, GONG L, et al. Tempo-spatial regulation of the Wnt pathway by FAM13A modulates the stemness of alveolar epithelial progenitors[J]. EBioMedicine, 2021, 69: 103463. [11] LKHAGVADORJ K, ZENG Z J, SONG J, et al. Prenatal smoke exposure dysregulates lung epithelial cell differentiation in mouse offspring: role for AREG-induced EGFR signaling[J]. Am J Physiol Lung Cell Mol Physiol, 2020, 319(4): 742-751. [12] ZUO W L, YANG J, GOMI K, et al. EGF-amphiregulin interplay in airway stem/progenitor cells links the pathogenesis of smoking-induced lesions in the human airway epithelium[J]. Stem Cells, 2017, 35(3): 824-837. [13] WU X H, BOS I S T, CONLON T M, et al. A transcriptomics-guided drug target discovery strategy identifies receptor ligands for lung regeneration[J]. Sci Adv, 2022, 8(12): eabj9949. [14] HUH D, MATTHEWS B D, MAMMOTO A, et al. Reconstituting organ-level lung functions on a chip[J]. Science, 2010, 328(5986): 1662-1668. [15] BENAM K H, NOVAK R, FERRANTE T C, et al. Biomimetic smoking robot for in vitro inhalation exposure compatible with microfluidic organ chips[J]. Nat Protoc, 2020, 15(2): 183-206. [16] LI Z Z, LI X, FENG B Y, et al. Combining a lung microfluidic chip exposure model with transcriptomic analysis to evaluate the inflammation in BEAS-2B cells exposed to cigarette smoke[J]. Anal Chim Acta, 2024, 1287: 342049. [17] OHASHI K, HAYASHIDA A, NOZAWA A, et al. Human vasculature-on-a-chip with macrophage-mediated endothelial activation: the biological effect of aerosol from heated tobacco products on monocyte adhesion[J]. Toxicol in vitro, 2023, 89: 105582. [18] POUSSIN C, KRAMER B, LANZ H L, et al. 3D human microvessel-on-a-chip model for studying monocyte-to-endothelium adhesion under flow -application in systems toxicology[J]. ALTEX, 2020, 37(1): 47-63. [19] SAKORNSAKOLPAT P, PROKOPENKO D, LAMONTAGNE M, et al. Genetic landscape of chronic obstructive pulmonary disease identifies heterogeneous cell-type and phenotype associations[J]. Nat Genet, 2019, 51(3): 494-505. [20] LAO T T, GLASS K, QIU W L, et al. Haploinsufficiency of Hedgehog interacting protein causes increased emphysema induced by cigarette smoke through network rewiring[J]. Genome Med, 2015, 7(1): 12. [21] LI Y, ZHANG L, POLVERINO F, et al. Hedgehog interacting protein (HHIP) represses airway remodeling and metabolic reprogramming in COPD-derived airway smooth muscle cells[J]. Sci Rep, 2021, 11(1): 9074. [22] ZHANG H, LI C F, SONG X M, et al. Integrated analysis reveals lung fibrinogen gamma chain as a biomarker for chronic obstructive pulmonary disease[J]. Ann Transl Med, 2021, 9(24): 1765. [23] XU Z H, PLATIG J, LEE S, et al. Cigarette smoking-associated isoform switching and 3' UTR lengthening via alternative polyadenylation[J]. Genomics, 2021, 113(6): 4184-4195. [24] JIN M Y, WANG Y Z, AN X Y, et al. Phenotypic and transcriptomic changes in the corneal epithelium following exposure to cigarette smoke[J]. Environ Pollut, 2021, 287: 117540. [25] ANTHéRIEU S, GARAT A, BEAUVAL N, et al. Comparison of cellular and transcriptomic effects between electronic cigarette vapor and cigarette smoke in human bronchial epithelial cells[J]. Toxicol in vitro, 2017, 45(Sup 3): 417-425. [26] PERCOCO G, PATATIAN A, EUDIER F, et al. Impact of cigarette smoke on physical-chemical and molecular proprieties of human skin in an ex vivo model[J]. Exp Dermatol, 2021, 30(11): 1610-1618. [27] MAMMEN M J, TU C J, MORRIS M C, et al. Proteomic network analysis of bronchoalveolar lavage fluid in ex-smokers to discover implicated protein targets and novel drug treatments for chronic obstructive pulmonary disease[J]. Pharmaceuticals, 2022, 15(5): 566. [28] MA S S, WANG C G, ZHAO B S, et al. Tandem mass tags labeled quantitative proteomics to study the effect of tobacco smoke exposure on the rat lung[J]. Biochim Biophys Acta Proteins Proteom, 2018, 1866(3): 496-506. [29] SOLANKI H S, BABU N, JAIN A P, et al. Cigarette smoke induces mitochondrial metabolic reprogramming in lung cells[J]. Mitochondrion, 2018, 40: 58-70. [30] NOVOTNA B, ABDEL-HAMID M, KOBLIZEK V, et al. A pilot data analysis of a metabolomic HPLC-MS/MS study of patients with COPD[J]. Adv Clin Exp Med, 2018, 27(4): 531-539. [31] DIAO W Q, LABAKI W W, HAN M K, et al. Disruption of histidine and energy homeostasis in chronic obstructive pulmonary disease[J]. Int J Chron Obstruct Pulmon Dis, 2019, 14: 2015-2025. [32] LIU G, LIN C J, YATES C R, et al. Metabolomic analysis identified reduced levels of xenobiotics, oxidative stress, and improved vitamin metabolism in smokers switched to vuse electronic nicotine delivery system[J]. Nicotine Tob Res, 2021, 23(7): 1133-1142. [33] SMITH M R, JARRELL Z R, ORR M, et al. Metabolome-wide association study of flavorant vanillin exposure in bronchial epithelial cells reveals disease-related perturbations in metabolism[J]. Environ Int, 2021, 147: 106323. [34] HU X M, FAN Y, LI H Y, et al. Impacts of cigarette smoking status on metabolomic and gut microbiota profile in male patients with coronary artery disease: a multi-omics study[J]. Front Cardiovasc Med, 2021, 8: 766739. [35] CRUICKSHANK-QUINN C I, MAHAFFEY S, JUSTICE M J, et al. Transient and persistent metabolomic changes in plasma following chronic cigarette smoke exposure in a mouse model[J]. PLoS One, 2014, 9(7): e101855. |