[1] HU C C, XUAN Y X, ZHANG X Y, et al. Immune cell metabolism and metabolic reprogramming[J]. Mol Biol Rep, 2022, 49(10): 9783-9795. [2] GANESH G V, MOHANRAM R K. Metabolic reprogramming and immune regulation in viral diseases[J]. Rev Med Virol, 2022, 32(2): e2268. [3] ADAMS R C, CARTER-CUSACK D, SHAIKH S N, et al. Donor bone marrow-derived macrophage MHC II drives neuroinflammation and altered behavior during chronic GVHD in mice[J]. Blood, 2022, 139(9): 1389-1408. [4] 姜晓旭, 郑义鹏, 赵九洲, 等. M1型巨噬细胞糖代谢重编程机制及其在炎症启动中的关键作用[J]. 癌变·畸变·突变, 2019, 31(1): 79-81, 85. [5] FAUBERT B, SOLMONSON A, DEBERARDINIS R J. Metabolic reprogramming and cancer progression[J]. Science, 2020, 368(6487): eaaw5473. [6] MILLS E L, KELLY B, LOGAN A, et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages[J]. Cell, 2016, 167(2): 457-470.e13. [7] NOMURA M, LIU J, ROVIRA I I, et al. Fatty acid oxidation in macrophage polarization[J]. Nat Immunol, 2016, 17(3): 216-217. [8] CARROLL R G, ZASŁONA Z, GALVÁN-PEÑA S, et al. An unexpected link between fatty acid synthase and cholesterol synthesis in proinflammatory macrophage activation[J]. J Biol Chem, 2018, 293(15): 5509-5521. [9] BATISTA-GONZALEZ A, VIDAL R, CRIOLLO A, et al. New insights on the role of lipid metabolism in the metabolic reprogramming of macrophages[J]. Front Immunol, 2020, 10: 2993. [10] HOHENSINNER P J, LENZ M, HAIDER P, et al. Pharmacological inhibition of fatty acid oxidation reduces atherosclerosis progression by suppression of macrophage NLRP3 inflammasome activation[J]. Biochem Pharmacol, 2021, 190: 114634. [11] 郑一帆, 黄咏彤, 张永成, 等. 氨基酸代谢重编程在肿瘤细胞及肿瘤相关巨噬细胞极化中的作用研究进展[J]. 山东医药, 2023, 63(12): 111-115. [12] YURDAGUL A Jr, SUBRAMANIAN M, WANG X B, et al. Macrophage metabolism of apoptotic cell-derived arginine promotes continual efferocytosis and resolution of injury[J]. Cell Metab, 2020, 31(3): 518- 533.e10. [13] 彭洁, 曹猛, 孙慕涵, 等. 谷氨酰胺代谢在机体免疫调控中作用的研究进展[J]. 癌变·畸变·突变, 2023, 35(3): 231-235, 239. [14] ARTS R J W, NOVAKOVIC B, TER HORST R, et al. Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity[J]. Cell Metab, 2016, 24(6): 807-819. [15] HU X B, MA Z F, XU B B, et al. Glutamine metabolic microenvironment drives M2 macrophage polarization to mediate trastuzumab resistance in HER2-positive gastric cancer[J]. Cancer Commun (Lond), 2023, 43(8): 909-937. [16] JIANG Q K, QIU Y P, KURLAND I J, et al. Glutamine is required for M1-like polarization of macrophages in response to Mycobacterium tuberculosis infection[J]. mBio, 2022, 13(4): e0127422. [17] CRUZAT V, MACEDO ROGERO M, NOEL KEANE K, et al. Glutamine: metabolism and immune function, supplementation and clinical translation[J]. Nutrients, 2018, 10(11): 1564. [18] LI J, YE Y Y, LIU Z H, et al. Macrophage mitochondrial fission improves cancer cell phagocytosis induced by therapeutic antibodies and is impaired by glutamine competition[J]. Nat Cancer, 2022, 3(4): 453-470. [19] O’NEILL L A J, ARTYOMOV M N. Itaconate: the poster child of metabolic reprogramming in macrophage function[J]. Nat Rev Immunol, 2019, 19(5): 273-281. [20] KIM J K, PARK E J, JO E K. Itaconate, arginine, and gammaaminobutyric acid: a host metabolite triad protective against mycobacterial infection[J]. Front Immunol, 2022, 13: 832015. [21] JIANG N, XIE B W, XIAO W W, et al. Fatty acid oxidation fuels glioblastoma radioresistance with CD47-mediated immune evasion[J]. Nat Commun, 2022, 13(1): 1511. [22] LIU S Q, ZHANG H L, LI Y N, et al. S100A4 enhances protumor macrophage polarization by control of PPAR-γ-dependent induction of fatty acid oxidation[J]. J Immunother Cancer, 2021, 9(6): e002548. [23] ZHOU Y M, LIN F R, WAN T, et al. ZEB1 enhances Warburg effect to facilitate tumorigenesis and metastasis of HCC by transcriptionally activating PFKM[J]. Theranostics, 2021, 11(12): 5926-5938. [24] JIANG H M, WEI H M, WANG H, et al. Zeb1-induced metabolic reprogramming of glycolysis is essential for macrophage polarization in breast cancer[J]. Cell Death Dis, 2022, 13(3): 206. [25] FU Q, XU L, WANG Y W, et al. Tumor-associated macrophagederived interleukin-23 interlinks kidney cancer glutamine addiction with immune evasion[J]. Eur Urol, 2019, 75(5): 752-763. [26] LIU P S, CHEN Y T, LI X Y, et al. CD40 signal rewires fatty acid and glutamine metabolism for stimulating macrophage anti-tumorigenic functions[J]. Nat Immunol, 2023, 24(3): 452-462. [27] XIANG W, SHI R C, KANG X, et al. Monoacylglycerol lipase regulates cannabinoid receptor 2-dependent macrophage activation and cancer progression[J]. Nat Commun, 2018, 9(1): 2574. |