[1] 康浩. 钴的市场分析及应用场景变化[J]. 电池, 2024, 54(4): 555-558. [2] DINAH M. Cobalt Market Report 2023[EB/OL]. (2024-05-01). https://www.cobaltinstitute.org/wp-content/uploads/2025/02/Cobalt-Market-Report-2023.pdf. [3] ZENG X, XU X J, BOEZEN H M, et al. Children with health impairments by heavy metals in an e-waste recycling area[J]. Chemosphere, 2016, 148: 408-415. [4] SALMENA L, POLISENO L, TAY Y, et al. A CeRNA hypothesis: the Rosetta stone of a hidden RNA language-[J]. Cell, 2011, 146(3): 353-358. [5] SAIGUSA H, MIMURA I, KURATA Y, et al. Hypoxia-inducible lncRNA MIR210HG promotes HIF1α expression by inhibiting miR-93-5p in renal tubular cells[J]. FEBS J, 2023, 290(16): 4040-4056. [6] YANG F, DUAN H Y, YE N N, et al. β-asarone protects PC12 cells against hypoxia-induced injury via negatively regulating RPPH1/MiR-542-3p/DEDD2 axis[J]. Cell Transplant, 2022, 31: 09636897221079336. [7] TANG J P, LI Y J, LIU X, et al. Cobalt induces neurodegenerative damages through impairing autophagic flux by activating hypoxia-inducible factor-1α triggered ROS overproduction[J]. Sci Total Environ, 2023, 857: 159432. [8] AKINRINDE A S, ADEBIYI O E. Neuroprotection by luteolin and Gallic acid against cobalt chloride-induced behavioural, morphological and neurochemical alterations in Wistar rats[J]. NeuroToxicology, 2019, 74: 252-263. [9] TANG J P, ZHENG C Y, ZHENG F L, et al. Global N6-methyladenosine profiling of cobalt-exposed cortex and human neuroblastoma H4 cells presents epitranscriptomics alterations in neurodegenerative disease-associated genes[J]. Environ Pollut, 2020, 266: 115326. [10] VIJAYAKUMAR P, MOU Y C, LI X J, et al. CoCrMo nanoparticle induces neurotoxicity mediated via mitochondrial dysfunction: a study model for implant derived nanoparticle effects[J]. Nanotoxicology, 2024, 18(8): 707-723. [11] KIKUCHI S, NINOMIYA T, KOHNO T, et al. Cobalt inhibits motility of axonal mitochondria and induces axonal degeneration in cultured dorsal root ganglion cells of rat[J]. Cell Biol Toxicol, 2018, 34(2): 93-107. [12] SANMARCO L M, RONE J M, POLONIO C M, et al. Lactate limits CNS autoimmunity by stabilizing HIF-1α in dendritic cells[J]. Nature, 2023, 620(7975): 881-889. [13] FUKUDA R, ZHANG H F, KIM J W, et al. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells[J]. Cell, 2007, 129(1): 111-122. [14] 彭琳, 曾明钦, 陈炯玉, 等. 慢性镉暴露下食管鳞状细胞癌细胞的lncRNA-mRNA共表达网络分析[J]. 癌变·畸变·突变, 2023, 35(4): 266-272, 278. [15] 李昕苇, 王全凯, 马顺鹏, 等. 甲基丙烯酸环氧丙酯诱导16HBE细胞恶性转化过程中LncRNA表达特征分析及ceRNA调控网络预测[J]. 癌变·畸变·突变, 2022, 34(1): 1-6. [16] STATELLO L, GUO C-J, CHEN L-L, et al. Author Correction: Gene regulation by long non-coding RNAs and its biological functions[J]. Nat Rev Mol Cell Biol, 2021, 22(2): 159. [17] 赵丽, 马慧, 孙艳. 竞争性内源性RNA在神经退行性疾病中作用的研究进展[J]. 癌变·畸变·突变, 2020, 32(3): 238-240. [18] NONAKA W, TAKATA T, IWAMA H, et al. A cerebrospinal fluid microRNA analysis: Progressive supranuclear palsy[J]. Mol Med Rep, 2022, 25(3): 88. [19] DENG L, JIANG J, CHEN S, et al. Long non-coding RNA ANRIL downregulation alleviates neuroinflammation in an ischemia stroke model via modulation of the miR-671-5p/NF-κB pathway[J]. Neurochem Res, 2022, 47(7): 2002-2015. [20] LU F, MO L H, LIU A X. Circ_0001360 absence alleviates oxygen-glucose deprivation/reoxygenation-induced SK-N-SH cell injury via controlling the miR-671-5p/BMF pathway[J]. Int J Neurosci, 2024, 134(5): 492-502. [21] JACOB J R, SINGH R, OKAMOTO M, et al. miRNA-194-3p represses NF-κB in gliomas to attenuate iPSC genes and proneural to mesenchymal transition[J]. iScience, 2024, 27(1): 108650. [22] LI J N, BI H R. Molecular mechanisms of atrazine toxicity on H19-7 hippocampal neurons revealed by integrated miRNA and mRNA “omics”[J]. Ecotoxicol Environ Saf, 2023, 253: 114681. [23] ZENG M L, SHAO C Y, ZHOU H F, et al. Protocatechudehyde improves mitochondrial energy metabolism through the HIF1α/PDK1 signaling pathway to mitigate ischemic stroke-elicited internal capsule injury[J]. J Ethnopharmacol, 2021, 277: 114232. |