[1] KIANG J G, BLAKELY W F. Combined radiation injury and its impacts on radiation countermeasures and biodosimetry[J]. Int J Radiat Biol, 2023, 99(7): 1055–1065. [2] WU T, ORSCHELL C M. The delayed effects of acute radiation exposure (DEARE): characteristics, mechanisms, animal models, and promising medical countermeasures[J]. Int J Radiat Biol, 2023, 99(7): 1066–1079. [3] KADLCIKOVA D, MUSILOVA P, HRADSKA H, et al. Chromosomal damage in occupationally exposed health professionals assessed by two cytogenetic methods[J]. Arch Environ Occup Health, 2023, 78(3): 158–169. [4] HERNáNDEZ A, ENDESFELDER D, EINBECK J, et al. Biodose Tools: an R shiny application for biological dosimetry [J]. Int J Radiat Biol, 2023, 99(9): 1378–1390. [5] LAI J J, CHAU Z L, CHEN S Y, et al. Exosome processing and characterization approaches for research and technology development[J]. Adv Sci, 2022, 9(15): 2103222. [6] KRYLOVA S V, FENG D R. The machinery of exosomes: biogenesis, release, and uptake[J]. Int J Mol Sci, 2023, 24(2): 1337. [7] TANG J Y, CHUANG Y T, SHIAU J P, et al. Connection between radiation-regulating functions of natural products and miRNAs targeting radiomodulation and exosome biogenesis[J]. Int J Mol Sci, 2023, 24(15): 12449. [8] ROGAN P K, MUCAKI E J, LU R P, et al. Meeting radiation dosimetry capacity requirements of population-scale exposures by geostatistical sampling[J]. PLoS One, 2020, 15(4): e0232008. [9] EKENDAHL D, ?EMUSOVá Z, REIMITZ D, et al. Retrospective physical dosimetry in the Czech Republic: an overview of already established methods and recent research[J]. Int J Radiat Biol, 2022, 98(5): 890–899. [10] SPROULL M, CAMPHAUSEN K. State-of-the-art advances in radiation biodosimetry for mass casualty events involving radiation exposure[J]. Radiat Res, 2016, 186(5): 423–435. [11] YANG D B, ZHANG W H, ZHANG H Y, et al. Progress, opportunity, and perspective on exosome isolation -efforts for efficient exosome-based theranostics[J]. Theranostics, 2020, 10(8): 3684–3707. [12] ZHAI S W, ZHU Y J, WANG X Y, et al. Development of a predictive model for radiation pneumonitis based on plasma exosomal miR-200b-5p[J]. Front Oncol, 2025, 15: 1516348. [13] SONG M, WANG Y, SHANG Z F, et al. Bystander autophagy mediated by radiation-induced exosomal miR-7-5p in non-targeted human bronchial epithelial cells[J]. Sci Rep, 2016, 6: 30165. [14] CHENG L Y, PARKER R. ZNFX1: a multifunctional modulator of the innate immune response[J]. Front Immunol, 2025, 16: 1564628. [15] STOJANOVIC L, ABBOTTS R, TRIPATHI K, et al. ZNFX1 functions as a master regulator of epigenetically induced pathogen mimicry and inflammasome signaling in cancer[J]. Cancer Res, 2025, 85(7): 1183–1198. [16] LI W H, ZHOU S X, JIA M, et al. Early biomarkers associated with P53 signaling for acute radiation injury[J]. Life, 2022, 12(1): 99. [17] GENG A K, TANG H Y, HUANG J, et al. The deacetylase SIRT6 promotes the repair of UV-induced DNA damage by targeting DDB2[J]. Nucleic Acids Res, 2020, 48(16): 9181– 9194. [18] SONG J K, LIU Y D, SU J M, et al. Systematic analysis of alternative splicing signature unveils prognostic predictor for kidney renal clear cell carcinoma[J]. J Cell Physiol, 2019, 234(12): 22753–22764. [19] PANG L, WANG Q Q, WANG L X, et al. Development and validation of cuproptosis-related lncRNA signatures for prognosis prediction in colorectal cancer[J]. BMC Med Genomics, 2023, 16(1): 58. [20] YIN L, ZHANG J G, ZHU Z P, et al. The FBXW7-KMT2 axis in cancer-associated fibroblasts controls tumor growth via an epigenetic-paracrine mechanism[J]. Proc Natl Acad Sci USA, 2025, 122(13): e2423130122. [21] GONG L Y, CUI D R, LIU D, et al. FBXW7 inactivation induces cellular senescence via accumulation of p53[J]. Cell Death Dis, 2022, 13(9): 788. |