[1] HAYFLICK L, MOORHEAD P S. The serial cultivation of human diploid cell strains[J]. Exp Cell Res, 1961, 25: 585-621. [2] FAGET D V, REN Q H, STEWART S A. Unmasking senescence: context-dependent effects of SASP in cancer[J]. Nat Rev Cancer, 2019, 19(8): 439-453. [3] WANG B S, HAN J, ELISSEEFF J H, et al. The senescence-associated secretory phenotype and its physiological and pathological implications[J]. Nat Rev Mol Cell Biol, 2024, 25(12): 958-978. [4] DONG Z N, LUO Y H, YUAN Z C, et al. Cellular senescence and SASP in tumor progression and therapeutic opportunities[J]. Mol Cancer, 2024, 23(1): 181. [5] COURTOIS-COX S, JONES S L, CICHOWSKI K. Many roads lead to oncogene-induced senescence[J]. Oncogene, 2008, 27(20): 2801-2809. [6] CHEN Z B, TROTMAN L C, SHAFFER D, et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis[J]. Nature, 2005, 436(7051): 725-730. [7] CHANG B D, BROUDE E V, DOKMANOVIC M, et al. A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents[J]. Cancer Res, 1999, 59(15): 3761-3767. [8] EWALD J A, PETERS N, DESOTELLE J A, et al. A high-throughput method to identify novel senescence-inducing compounds[J]. J Biomol Screen, 2009, 14(7): 853-858. [9] SCHWARZE S R, FU V X, DESOTELLE J A, et al. The identification of senescence-specific genes during the induction of senescence in prostate cancer cells[J]. Neoplasia, 2005, 7(9): 816-823. [10] ALIMONTI A, NARDELLA C, CHEN Z B, et al. A novel type of cellular senescence that can be enhanced in mouse models and human tumor xenografts to suppress prostate tumorigenesis[J]. J Clin Invest, 2010, 120(3): 681-693. [11] ALIMONTI A, CARRACEDO A, CLOHESSY J G, et al. Subtle variations in Pten dose determine cancer susceptibility[J]. Nat Genet, 2010, 42(5): 454-458. [12] CALCINOTTO A, KOHLI J, ZAGATO E, et al. Cellular senescence: aging, cancer, and injury[J]. Physiol Rev, 2019, 99(2): 1047-1078. [13] VAN TUYN J, JABER-HIJAZI F, MACKENZIE D, et al. Oncogene-expressing senescent melanocytes up-regulate MHC class II, a candidate melanoma suppressor function[J]. J Invest Dermatol, 2017, 137(10): 2197-2207. [14] RUSCETTI M, MORRIS J P, MEZZADRA R, et al. Senescence-induced vascular remodeling creates therapeutic vulnerabilities in pancreas cancer[J]. Cell, 2021, 184(18): 4838-4839. [15] ANTONANGELI F, SORIANI A, RICCI B, et al. Natural killer cell recognition of in vivo drug-induced senescent multiple myeloma cells[J]. Oncoimmunology, 2016, 5(10): e1218105. [16] VILGELM A E, JOHNSON C A, PRASAD N, et al. Connecting the dots: therapy-induced senescence and a tumor-suppressive immune microenvironment[J]. J Natl Cancer Inst, 2015, 108(6): djv406. [17] LUJAMBIO A, AKKARI L, SIMON J, et al. Non-cell-autonomous tumor suppression by p53[J]. Cell, 2013, 153(2): 449-460. [18] KUGEL C H 3rd, DOUGLASS S M, WEBSTER M R, et al. Age correlates with response to anti-PD1, reflecting age-related differences in intratumoral effector and regulatory T-cell populations[J]. Clin Cancer Res, 2018, 24(21): 5347-5356. [19] PALMER D B. The effect of age on thymic function[J]. Front Immunol, 2013, 4: 316. [20] TOSO A, REVANDKAR A, DI MITRI D, et al. Enhancing chemotherapy efficacy in Pten-deficient prostate tumors by activating the senescence-associated antitumor immunity[J]. Cell Rep, 2014, 9(1): 75-89. [21] OLIVIERI F, SPAZZAFUMO L, SANTINI G, et al. Age-related differences in the expression of circulating microRNAs: miR-21 as a new circulating marker of inflammaging[J]. Mech Ageing Dev, 2012, 133(11/12): 675-685. [22] KAUR A, ECKER B L, DOUGLASS S M, et al. Remodeling of the collagen matrix in aging skin promotes melanoma metastasis and affects immune cell motility[J]. Cancer Discov, 2019, 9(1): 64-81. [23] NORTHEY J J, PRZYBYLA L, WEAVER V M. Tissue force programs cell fate and tumor aggression[J]. Cancer Discov, 2017, 7(11): 1224-1237. [24] LUO X M, FU Y J, LOZA A J, et al. Stromal-initiated changes in the bone promote metastatic niche development[J]. Cell Rep, 2016, 14(1): 82-92. [25] YOSHIDA A, LEE E K, DIEHL J A. Induction of therapeutic senescence in vemurafenib-resistant melanoma by extended inhibition of CDK4/6[J]. Cancer Res, 2016, 76(10): 2990-3002. [26] MARTINS C P, BROWN-SWIGART L, EVAN G I. Modeling the therapeutic efficacy of p53 restoration in tumors[J]. Cell, 2006, 127(7): 1323-1334. [27] RYU S J, OH Y S, PARK S C. Failure of stress-induced downregulation of Bcl-2 contributes to apoptosis resistance in senescent human diploid fibroblasts[J]. Cell Death Differ, 2007, 14(5): 1020-1028. [28] GUERRERO A, HERRANZ N, SUN B, et al. Cardiac glycosides are broad-spectrum senolytics[J]. Nat Metab, 2019, 1(11): 1074-1088. [29] AMOR C, FEUCHT J, LEIBOLD J, et al. Senolytic CAR T cells reverse senescence-associated pathologies[J]. Nature, 2020, 583(7814): 127-132. [30] WANG L Q, LEITE DE OLIVEIRA R, WANG C, et al. High-throughput functional genetic and compound screens identify targets for senescence induction in cancer[J]. Cell Rep, 2017, 21(3): 773-783. |