[1] SHIBATA Y, KUMAR P, LAYER R, et al. Extrachromosomal microDNAs and chromosomal microdeletions in normal tissues[J]. Science, 2012, 336(6077):82-86. [2] COHEN S, REGEV A, LAVI S. Small polydispersed circular DNA (spcDNA) in human cells:association with genomic instability[J]. Oncogene, 1997, 14(8):977-985. [3] TOMASKA L, NOSEK J, KRAMARA J, et al. Telomeric circles:universal players in telomere maintenance?[J]. Nat Struct Mol Biol, 2009, 16(10):1010-1015. [4] WU S H, BAFNA V, CHANG H Y, et al. Extrachromosomal DNA:an emerging hallmark in human cancer[J]. Annu Rev Pathol, 2022, 17:367-386. [5] HOTTA Y, BASSEL A. Molecular size and circularity of DNA in cells of mammals and higher plants[J]. Proc Natl Acad Sci U S A, 1965, 53(2):356-362. [6] PAULSEN T, KUMAR P, KOSEOGLU M M, et al. Discoveries of extrachromosomal circles of DNA in normal and tumor cells[J]. Trends Genet, 2018, 34(4):270-278. [7] SIN S T K, JIANG P Y, DENG J E, et al. Identification and characterization of extrachromosomal circular DNA in maternal plasma[J]. Proc Natl Acad Sci U S A, 2020, 117(3):1658-1665. [8] LUKASZEWICZ A, LANGE, KEENEY S, et al. De novo deletions and duplications at recombination hotspots in mouse germlines[J]. Cell, 2021, 184(24):5970-5984. [9] KOCHE R P, RODRIGUEZ-FOS E, HELMSAUER K, et al. Extrachromosomal circular DNA drives oncogenic genome remodeling in neuroblastoma[J]. Nat Genet, 2020, 52(1):29-34. [10] HULL R M, KING M, PIZZA G, et al. Transcription-induced formation of extrachromosomal DNA during yeast ageing[J]. PLoS Biol, 2019, 17(12):e3000471. [11] DILLON L W, KUMAR P, SHIBATA Y, et al. Production of extrachromosomal MicroDNAs is linked to mismatch repair pathways and transcriptional activity[J]. Cell Rep, 2015, 11(11):1749-1759. [12] MOUAKKAD-MONTOYA L, MURATA M M, SULOVARI A, et al. Quantitative assessment reveals the dominance of duplicated sequences in germline-derived extrachromosomal circular DNA[J]. Proc Natl Acad Sci U S A, 2021, 118(47):e2102842118. [13] LYU X Y, DENG Y, HUANG X Y, et al. CRISPR FISHer enables high-sensitivity imaging of nonrepetitive DNA in living cells through phase separation-mediated signal amplification[J]. Cell Res, 2022, 32(11):969-981. [14] MØLLER H D, MOHIYUDDIN M, PRADA-LUENGO I, et al. Circular DNA elements of chromosomal origin are common in healthy human somatic tissue[J]. Nat Commun, 2018, 9(1):1069. [15] ZHU J, ZHANG F, DU M J, et al. Molecular characterization of cellfree eccDNAs in human plasma[J]. Sci Rep, 2017, 7(1):10968. [16] PAULSEN T, MALAPATI P, SHIBATA Y, et al. MicroDNA levels are dependent on MMEJ, repressed by c-NHEJ pathway, and stimulated by DNA damage[J]. Nucleic Acids Res, 2021, 49(20):11787-11799. [17] WANG Y G, WANG M, DJEKIDEL M N, et al. eccDNAs are apoptotic products with high innate immunostimulatory activity[J]. Nature, 2021, 599(7884):308-314. [18] SEGAL E, FONDUFE-MITTENDORF Y, CHEN L Y, et al. A genomic code for nucleosome positioning[J]. Nature, 2006, 442(7104):772-778. [19] SIN S T, DENG J E, JI L, et al. Effects of nucleases on cell-free extrachromosomal circular DNA[J]. JCI Insight, 2022, 7(8):e156070. [20] MARNEF A, COHEN S, LEGUBE G. Transcription-coupled DNA double-strand break repair:active genes need special care[J]. J Mol Biol, 2017, 429(9):1277-1288. [21] COHEN Z, BACHARACH E, LAVI S. Mouse major satellite DNA is prone to eccDNA formation via DNA Ligase IV-dependent pathway[J]. Oncogene, 2006, 25(33):4515-4524. [22] CHAMORRO GONZÁLEZ R, CONRAD T, STÖBER M C, et al. Parallel sequencing of extrachromosomal circular DNAs and transcriptomes in single cancer cells[J]. Nat Genet, 2023, 55(5):880-890. [23] HENRIKSEN R A, JENJAROENPUN P, SJØSTRØM I B, et al. Circular DNA in the human germline and its association with recombination[J]. Mol Cell, 2022, 82(1):209-217. [24] QIU G H, ZHENG X T, FU M J, et al. The decreased exclusion of nuclear eccDNA:from molecular and subcellular levels to human aging and age-related diseases[J]. Ageing Res Rev, 2021, 67:101306. [25] CHITWOOD D G, WANG Q H, KLAUBERT S R, et al. Microevolutionary dynamics of eccDNA in Chinese hamster ovary cells grown in fed-batch cultures under control and lactate-stressed conditions[J]. Sci Rep, 2023, 13(1):1200. [26] THIBAULT T, DEGROUARD J, BARIL P, et al. Production of DNA minicircles less than 250 base pairs through a novel concentrated DNA circularization assay enabling minicircle design with NF-κB inhibition activity[J]. Nucleic Acids Res, 2017, 45(5):e26. [27] ALLEN S E, HUG I, PABIAN S, et al. Circular concatemers of ultrashort DNA segments produce regulatory RNAs[J]. Cell, 2017, 168(6):990-999. [28] PAULSEN T, SHIBATA Y, KUMAR P, et al. Small extrachromosomal circular DNAs, microDNA, produce short regulatory RNAs that suppress gene expression independent of canonical promoters[J]. Nucleic Acids Res, 2019, 47(9):4586-4596. [29] CHEN Z H, QI Y D, HE J M, et al. Distribution and characterization of extrachromosomal circular DNA in colorectal cancer[J]. Mol Biomed, 2022, 3(1):38. [30] STORCI G, BACALINI M G, BONIFAZI F, et al. Ribosomal DNA instability:an evolutionary conserved fuel for inflammaging[J]. Ageing Res Rev, 2020, 58:101018. [31] LI Y, BERKE I C, MODIS Y. DNA binding to proteolytically activated TLR9 is sequence-independent and enhanced by DNA curvature[J]. EMBO J, 2012, 31(4):919-931. [32] KUMAR P, DILLON L W, SHIBATA Y, et al. Normal and cancerous tissues release extrachromosomal circular DNA (eccDNA) into the circulation[J]. Mol Cancer Res, 2017, 15(9):1197-1205. [33] SIN S T K, JI L, DENG J E, et al. Characteristics of fetal extrachromosomal circular DNA in maternal plasma:methylation status and clearance[J]. Clin Chem, 2021, 67(5):788-796. [34] MEHANNA P, GAGNÉ V, LAJOIE M, et al. Characterization of the microDNA through the response to chemotherapeutics in lymphoblastoid cell lines[J]. PLoS One, 2017, 12(9):e0184365. [35] LV W, PAN X G, HAN P, et al. Circle-Seq reveals genomic and disease-specific hallmarks in urinary cell-free extrachromosomal circular DNAs[J]. Clin Transl Med, 2022, 12(4):e817. [36] ZHU Y, LIU Z H, GUO Y D, et al. Whole-genome sequencing of extrachromosomal circular DNA of cerebrospinal fluid of medulloblastoma[J]. Front Oncol, 2022, 12:934159. [37] WEN K, ZHANG L J, CAI Y, et al. Identification and characterization of extrachromosomal circular DNA in patients with high myopia and cataract[J]. Epigenetics, 2023, 18(1):2192324. [38] LIN C W, CHEN Y F, ZHANG F, et al. Encoding gene RAB3B exists in linear chromosomal and circular extrachromosomal DNA and contributes to cisplatin resistance of hypopharyngeal squamous cell carcinoma via inducing autophagy[J]. Cell Death Dis, 2022, 13(2):171. [39] SUN Z G, JI N, ZHAO R C, et al. Extrachromosomal circular DNAs are common and functional in esophageal squamous cell carcinoma[J]. Ann Transl Med, 2021, 9(18):1464. [40] WU X Q, LI P, YIMITI M, et al. Identification and characterization of extrachromosomal circular DNA in plasma of lung adenocarcinoma patients[J]. Int J Gen Med, 2022, 15:4781-4791. [41] CEN Y X, FANG Y F, REN Y, et al. Global characterization of extrachromosomal circular DNAs in advanced high grade serous ovarian cancer[J]. Cell Death Dis, 2022, 13(4):342. [42] OUYANG Y F, LU W X, WANG Y, et al. Integrated analysis of mRNA and extrachromosomal circular DNA profiles to identify the potential mRNA biomarkers in breast cancer[J]. Gene, 2023, 857:147174. [43] PANG J Y, PAN X G, LIN L, et al. Characterization of plasma extrachromosomal circular DNA in gouty arthritis[J]. Front Genet, 2022, 13:859513. [44] GEROVSKA D, ARAÚZO-BRAVO M J. Systemic lupus erythematosus patients with DNASE1L3·Deficiency have a distinctive and specific genic circular DNA profile in plasma[J]. Cells, 2023, 12(7):1061. |