[1] TOOR S M, SALEH R, SASIDHARAN NAIR V, et al. T-cell responses and therapies against SARS-CoV-2 infection[J]. Immunology, 2021, 162(1):30-43. [2] PEETERS B W A, GILLESPIE G M. Adaptive meets innate:CD8+ T cells kill MHC-I-negative tumour cells[J]. Nat Rev Immunol, 2023, 23(5):272. [3] ABUASAB T, ROWE J, TVITO A. Emerging monoclonal antibody therapy for the treatment of acute lymphoblastic leukemia[J]. Biologics, 2021, 15:419-431. [4] TUERK C, GOLD L. Systematic evolution of ligands by exponential enrichment:RNA ligands to bacteriophage T4 DNA polymerase[J]. Science, 1990, 249(4968):505-510. [5] ELLINGTON A D, SZOSTAK J W. In vitro selection of RNA molecules that bind specific ligands[J]. Nature, 1990, 346(6287):818-822. [6] SUN H G, ZU Y L. A highlight of recent advances in aptamer technology and its application[J]. Molecules, 2015, 20(7):11959-11980. [7] SUN H G, ZU Y L. Aptamers and their applications in nanomedicine[J]. Small, 2015, 11(20):2352-2364. [8] 李亚楠, 赵洁, 张傲哲, 等. 核酸适配体的体外筛选方法的最新研究进展[J]. 生物技术通报, 2017, 33(4):78-82. [9] ALI M H, ELSHERBINY M E, EMARA M. Updates on aptamer research[J]. Int J Mol Sci, 2019, 20(10):2511. [10] SAFARKHANI M, AHMADI S, IPAKCHI H, et al. Advancements in aptamer-driven DNA nanostructures for precision drug delivery[J]. Adv Sci, 2024, 11(26):e2401617. [11] ZHOU J H, ROSSI J. Aptamers as targeted therapeutics:current potential and challenges[J]. Nat Rev Drug Discov, 2017, 16(6):440. [12] YAN J Q, BHADANE R, RAN M X, et al. Development of Aptamer-DNAzyme based metal-nucleic acid frameworks for gastric cancer therapy[J]. Nat Commun, 2024, 15(1):3684. [13] ZHU C, FENG Z R, QIN H W, et al. Recent progress of SELEX methods for screening nucleic acid aptamers[J]. Talanta, 2024, 266(Pt 1):124998. [14] 王子健, 陈尔凝, 杨歌, 等. 小分子靶标的核酸适配体筛选研究进展[J]. 分析化学, 2020, 48(5):573-592. [15] PARASHAR A. Aptamers in therapeutics[J]. J Clin Diagn Res, 2016, 10(6):BE01-BE06. [16] LYU Y F, CHEN G, SHANGGUAN D H, et al. Generating cell targeting aptamers for nanotheranostics using cell-SELEX[J]. Theranostics, 2016, 6(9):1440-1452. [17] JIN C, QIU L P, LI J, et al. Cancer biomarker discovery using DNA aptamers[J]. Analyst, 2016, 141(2):461-466. [18] OOGA M, SAHAYASHEELA V J, HIROSE Y, et al. A dual DNA-binding conjugate that selectively recognizes G-quadruplex structures[J]. Chem Commun, 2024, 60(66):8744-8747. [19] ALVAREZ R, STORK C A, SAYOC-BECERRA A, et al. A simulated microgravity environment causes a sustained defect in epithelial barrier function[J]. Sci Rep, 2019, 9(1):17531. [20] QIN G, LIU Z Q, YANG J, et al. Targeting specific DNA G-quadruplexes with CRISPR-guided G-quadruplex-binding proteins and ligands[J]. Nat Cell Biol, 2024, 26(7):1212-1224. [21] 贾海静, 高亚菁, 娄新徽. 核酸适配体筛选与亲和力评价技术主要研究方向、进展与挑战[J]. 生物化学与生物物理进展, 2023, 50(9):2051-2076. [22] PELOSSOF R, SINGH I, YANG J L, et al. Affinity regression predicts the recognition code of nucleic acid-binding proteins[J]. Nat Biotechnol, 2015, 33(12):1242-1249. [23] WANG T, CHEN C Y, LARCHER L M, et al. Three decades of nucleic acid aptamer technologies:Lessons learned, progress and opportunities on aptamer development[J]. Biotechnol Adv, 2019, 37(1):28-50. [24] KACHEROVSKY N, CARDLE I I, CHENG E L, et al. Traceless aptamer-mediated isolation of CD8+ T cells for chimeric antigen receptor T-cell therapy[J]. Nat Biomed Eng, 2019, 3(10):783-795. [25] CHANDRASEKARAN A R. Nuclease resistance of DNA nanostructures[J]. Nat Rev Chem, 2021, 5(4):225-239. |