[1] REZAZADEH F, ANDISHEH-TADBIR A, MALEK MANSOURI Z, et al. Evaluation of recurrence, mortality and treatment complications of oral squamous cell carcinoma in public health centers in Shiraz during 2010 to 2020[J]. BMC Oral Health, 2023, 23(1):341. [2] 郑适泽,孟琳,任飞龙,等.口腔鳞癌来源的游离DNA通过诱导巨噬细胞极化调控口腔癌细胞系干性和迁移能力[J].四川大学学报(医学版), 2023, 54(3):510-516. [3] 侯泽宇,唐金茹,李龙江.口腔鳞状细胞癌发生、发展过程中细胞周期调控因子的研究进展[J].口腔颌面外科杂志, 2023, 33(2):119-122. [4] ZHANG Q Y, TEOW J Y, KERISHNAN J P, et al. Clusterin and its isoforms in oral squamous cell carcinoma and their potential as biomarkers:a comprehensive review[J]. Biomedicines, 2023, 11(5):1458. [5] ZHANG X Y, XIE S, WANG D C, et al. Prognosis and nomogram prediction for patients with oral squamous cell carcinoma:a cohort study[J]. Diagnostics, 2023, 13(10):1768. [6] 利展鸿.基于基因表达谱筛选口腔鳞状细胞癌关键候选基因和通路的生物信息学分析[D].广州:南方医科大学, 2019. [7] GOPINATH P, NATARAJAN A, SATHYANARAYANAN A, et al. The multifaceted role of Matricellular Proteins in health and cancer, as biomarkers and therapeutic targets[J]. Gene, 2022, 815:146137. [8] RUCKES T, SAUL D, VAN SNICK J, et al. Autocrine antiapoptotic stimulation of cultured adult T-cell leukemia cells by overexpression of the chemokine I-309[J]. Blood, 2001, 98(4):1150-1159. [9] HUANG F, QI H. MiR-29c-3p/C1QTNF6 restrains the angiogenesis and cell proliferation, migration and invasion in head and neck squamous cell carcinoma[J]. Mol Biotechnol, 2023, 65(6):913-921. [10] ALMANGUSH A, MÄKITIE A A, TRIANTAFYLLOU A, et al. Staging and grading of oral squamous cell carcinoma:an update[J]. Oral Oncol, 2020, 107:104799. [11] LACALLE-GONZÁLEZ C, ESTRELLA SANTOS A, LANDAETA KANCEV L C, et al. Management of non-hepatic distant metastases in neuroendocrine neoplasms[J]. Best Pract Res Clin Endocrinol Metab, 2023, 37(5):101784. [12] BILL R, WIRAPATI P, MESSEMAKER M, et al. CXCL9:SPP1 macrophage polarity identifies a network of cellular programs that control human cancers[J]. Science, 2023, 381(6657):515-524. [13] KFOURY Y S, JI F, JAIN E, et al. The bone marrow stroma in human myelodysplastic syndrome reveals alterations that regulate disease progression[J]. Blood Adv, 2023, 7(21):6608-6623. [14] LI K, YANG Y F, MA M W, et al. Hypoxia-based classification and prognostic signature for clinical management of hepatocellular carcinoma[J]. World J Surg Oncol, 2023, 21(1):216. [15] ZHANG Y, LI S, CUI X G, et al. MicroRNA-944 inhibits breast cancer cell proliferation and promotes cell apoptosis by reducing SPP1 through inactivating the PI3K/Akt pathway[J]. Apoptosis, 2023, 28(11/12):1546-1563. [16] BRINA D, PONZONI A, TROIANI M, et al. The Akt/mTOR and MNK/eIF4E pathways rewire the prostate cancer translatome to secrete HGF, SPP1 and BGN and recruit suppressive myeloid cells[J]. Nat Cancer, 2023, 4(8):1102-1121. [17] XUAN Z X, LIU L Q, ZHANG G B, et al. Novel cell subtypes of SPP1+S100P+, MS4A1-SPP1+S100P+were key subpopulations in intrahepatic cholangiocarcinoma[J]. Biochim Biophys Acta Gen Subj, 2023, 1867(9):130420. [18] MAO T, CHEN W J, XIONG H F, et al. DEC1 is a potential marker of early metastasis in Oral squamous cell carcinoma[J]. Tissue Cell, 2023, 82:102094. [19] NAKAMURA S, TANIMOTO K, BHAWAL U K. Ribosomal stress couples with the hypoxia response in Dec1-dependent orthodontic tooth movement[J]. Int J Mol Sci, 2022, 24(1):618. [20] LIN G F, LIN L L, LIN H, et al. C1QTNF6 regulated by miR-29a-3p promotes proliferation and migration in stage Ilung adenocarcinoma[J]. BMC Pulm Med, 2022, 22(1):285. [21] RAO X, LU Y P. C1QTNF6 targeted by miR-184 regulates the proliferation, migration, and invasion of lung adenocarcinoma cells[J]. Mol Biotechnol, 2022, 64(11):1279-1287. [22] LIU W, ZHANG J, XIE T, et al. C1QTNF6 is a prognostic biomarker and related to immune infiltration and drug sensitivity:a pan-cancer analysis[J]. Front Pharmacol, 2022, 13:855485. |