[1] MISHRA S K, MILLMAN S E, ZHANG L B. Metabolism in acute myeloid leukemia: mechanistic insights and therapeutic targets[J]. Blood, 2023, 141(10): 1119-1135. [2] MAHER M, DIESCH J, CASQUERO R, et al. Epigenetictranscriptional regulation of fatty acid metabolism and its alterations in leukaemia[J]. Front Genet, 2018, 9: 405. [3] PRESTI C L, YAMARYO-BOTTé Y, MONDET J, et al. Variation in lipid species profiles among leukemic cells significantly impacts their sensitivity to the drug targeting of lipid metabolism and the prognosis of AML patients[J]. Int J Mol Sci, 2023, 24(6): 5988. [4] LI D, LIANG J M, YANG W, et al. A distinct lipid metabolism signature of acute myeloid leukemia with prognostic value[J]. Front Oncol, 2022, 12: 876981. [5] ITO H, NAKAMAE I, KATO J Y, et al. Stabilization of fatty acid synthesis enzyme acetyl-CoA carboxylase 1 suppresses acute myeloid leukemia development[J]. J Clin Invest, 2021, 131(12): e141529. [6] GREVENGOED T J, KLETT E L, COLEMAN R A. Acyl-CoA metabolism and partitioning[J]. Annu Rev Nutr, 2014, 34: 1-30. [7] THOMAS R, AL-RASHED F, AKHTER N, et al. ACSL1 regulates TNFα-induced GM-CSF production by breast cancer MDA-MB-231 cells[J]. Biomolecules, 2019, 9(10): 555. [8] ZHANG Q Y, ZHOU W, YU S, et al. Metabolic reprogramming of ovarian cancer involves ACSL1-mediated metastasis stimulation through upregulated protein myristoylation[J]. Oncogene, 2021, 40(1): 97-111. [9] CHEN Y H, ZHAO Y, DENG Y, et al. FATP2 regulates non-small cell lung cancer by mediating lipid metabolism through ACSL1[J]. Tissue Cell, 2023, 82: 102105. [10] GUO L C, LU J X, GAO J, et al. The function of SNHG7/miR- 449a/ACSL1 axis in thyroid cancer[J]. J Cell Biochem, 2020, 121(10): 4034-4042. [11] 陈瑶, 庄海慧, 陆瑜钰, 等. 脂肪酸代谢在急性髓系白血病中的研究进展[J]. 生命的化学, 2022, 42(7): 1365-1372. [12] ARéVALO C, ROJAS L, SANTAMARIA M, et al. Untargeted metabolomic and lipidomic analyses reveal lipid dysregulation in the plasma of acute leukemia patients[J]. Front Mol Biosci, 2023, 10: 1235160. [13] BAI S R, WANG H Z, SHAO R N, et al. Lipid profile as a novel prognostic predictor for patients with acute myeloid leukemia[J]. Front Oncol, 2023, 13: 950732. [14] BARBOSA-CORTES L, ATILANO-MIGUEL S, MARTINTREJO J A, et al. Effect of long-chain omega-3 polyunsaturated fatty acids on cardiometabolic factors in children with acute lymphoblastic leukemia undergoing treatment: a secondary analysis of a randomized controlled trial[J]. Front Endocrinol, 2023, 14: 1120364. [15] BACCI M, LORITO N, SMIRIGLIA A, et al. Fat and furious: lipid metabolism in antitumoral therapy response and resistance [J]. Trends Cancer, 2021, 7(3): 198-213. [16] 谢婉清, 杨雪, 顾闰夏, 等. 可诱导表达AML1-ETO白血病细胞模型的建立及其对白血病细胞脂肪酸代谢的影响[J]. 中华血液学杂志, 2023, 44(5): 366-372. [17] OHKUNI A, OHNO Y, KIHARA A. Identification of acyl-CoA synthetases involved in the mammalian sphingosine 1-phosphate metabolic pathway[J]. Biochem Biophys Res Commun, 2013, 442(3/4): 195-201. [18] BAI F, YU L H, SHI J N, et al. Long-chain acyl-CoA synthetases activate fatty acids for lipid synthesis, remodeling and energy production in Chlamydomonas[J]. New Phytol, 2022, 233(2): 823-837. [19] YANG Y F, ZHU T, WANG X, et al. ACSL3 and ACSL4, distinct roles in ferroptosis and cancers[J]. Cancers, 2022, 14(23): 5896. [20] SU Z, LIU X, HU W Y, et al. Myeloid neoplasm with ETV6: ACSl6 fusion: landscape of molecular and clinical features[J]. Hematology, 2022, 27(1): 1010-1018. [21] TEMIZ M Z, COLAKEROL A, SONMEZ S Z, et al. Prognostic role of long-chain acyl-coenzyme A synthetase family genes in patients with clear cell renal cell carcinoma: a comprehensive bioinformatics analysis confirmed with external validation cohorts[J]. Clin Genitourin Cancer, 2023, 21(1): 91-104. [22] BAI J, ZHANG X Y, KANG X N, et al. Screening of core genes and pathways in breast cancer development via comprehensive analysis of multi gene expression datasets[J]. Oncol Lett, 2019, 18(6): 5821-5830. |