[1] CHEN X X, TANG J, SHUAI W Z, et al. Macrophage polarization and its role in the pathogenesis of acute lung injury/acute respiratory distress syndrome[J]. Inflamm Res, 2020, 69(9):883-895. [2] FAN P, XIE X H, CHEN C H, et al. Molecular regulation mechanisms and interactions between reactive oxygen species and mitophagy[J]. DNA Cell Biol, 2019, 38(1):10-22. [3] 涂永梅, 彭洁, 龙子, 等. PPAR-γ在巨噬细胞炎症调控中的作用及机制的研究进展[J]. 癌变·畸变·突变, 2022, 34(2):158-161. [4] EL-SHERBINY M, ATEF H, ELADL M A, et al. Leflunomide induces dose-dependent lung injury in mice via stimulating vimentin and NLRP3 inflammasome production[J]. Front Pharmacol, 2021, 12:631216. [5] JAMES CHON W, JOSEPHSON M A. Leflunomide in renal transplantation[J]. Expert Rev Clin Immunol, 2011, 7(3):273-281. [6] ALAMRI R D, ELMELIGY M A, ALBALAWI G A, et al. Leflunomide an immunomodulator with antineoplastic and antiviral potentials but drug-induced liver injury:a comprehensive review[J]. Int Immunopharmacol, 2021, 93:107398. [7] SAKAGAMI H, KISHINO K, AMANO O, et al. Cell death induced by nutritional starvation in mouse macrophage-like RAW264.7 cells[J]. Anticancer Res, 2009, 29(1):343-347. [8] HAMILTON L C, VOJNOVIC I, WARNER T D. A771726, the active metabolite of leflunomide, directly inhibits the activity of cyclo-oxygenase-2 in vitro and in vivo in a substrate-sensitive manner[J]. Br J Pharmacol, 1999, 127(7):1589-1596. [9] 张欣亚, 王碧莹, 贾福康, 等. 来氟米特干预类风湿关节炎大鼠代谢组学研究[J]. 药学与临床研究, 2023, 31(3):193-200. [10] PALMA F R, GANTNER B N, SAKIYAMA M J, et al. ROS production by mitochondria:function or dysfunction-[J]. Oncogene, 2024, 43(5):295-303. [11] KUMAR V. Pulmonary innate immune response determines the outcome of inflammation during pneumonia and sepsis-associated acute lung injury[J]. Front Immunol, 2020, 11:1722. [12] YU W H, WANG X, ZHAO J Z, et al. Stat2-Drp1 mediated mitochondrial mass increase is necessary for pro-inflammatory differentiation of macrophages[J]. Redox Biol, 2020, 37:101761. [13] 朱前珍. 来氟米特诱导NSC34细胞自噬促进SOD1突变蛋白降解的作用机制及其对ALS小鼠干预效果的初步研究[D]. 扬州:扬州大学, 2020. [14] ZAYTSEVA Y Y, WALLIS N K, CHASE SOUTHARD R, et al. The PPARgamma antagonist T0070907 suppresses breast cancer cell proliferation and motility via both PPARgamma-dependent and-independent mechanisms[J]. Anticancer Res, 2011, 31(3):813-823. [15] MAREMANDA K P, SUNDAR I K, RAHMAN I. Role of inner mitochondrial protein OPA1 in mitochondrial dysfunction by tobacco smoking and in the pathogenesis of COPD[J]. Redox Biol, 2021, 45:102055. [16] STARK J M, COQUET J M, TIBBITT C A. The role of PPAR-γ in allergic disease[J]. Curr Allergy Asthma Rep, 2021, 21(11):45. [17] 袁正洲, 李作孝, 李经伦, 等. 来氟米特对实验性变态反应性脑脊髓炎小鼠Th1/Th2平衡的影响[J]. 医学综述, 2015, 21(17):3201-3202, 3206. [18] 李金. 来氟米特联合泼尼松治疗狼疮肾炎患者的效果[J]. 中国民康医学, 2024, 36(7):59-61. [19] BUCH M H, EYRE S, MCGONAGLE D. Persistent inflammatory and non-inflammatory mechanisms in refractory rheumatoid arthritis[J]. Nat Rev Rheumatol, 2021, 17(1):17-33. [20] GOTTS J E, MATTHAY M A. Sepsis:pathophysiology and clinical management[J]. BMJ, 2016, 353:i1585. [21] 郑义鹏, 魏学敏, 周庆彪, 等. 线粒体分裂融合与细胞氧化还原交互调控作用的研究进展[J]. 癌变·畸变·突变, 2018, 30(3):239-241, 247. [22] LOCATI M, CURTALE G, MANTOVANI A. Diversity, mechanisms, and significance of macrophage plasticity[J]. Annu Rev Pathol, 2020, 15:123-147. [23] TU Y M, LIU J Z, KONG D Q, et al. Irisin drives macrophage anti-inflammatory differentiation via JAK2-STAT6-dependent activation of PPARγ and Nrf2 signaling[J]. Free Radic Biol Med, 2023, 201:98-110. [24] PELLATTIERO A, SCORRANO L. Flaming mitochondria:the anti-inflammatory drug leflunomide boosts mitofusins[J]. Cell Chem Biol, 2018, 25(3):231-233. [25] WU H L, YANG P, HU W L, et al. Overexpression of PKM2 promotes mitochondrial fusi on through attenuated p53 stability[J]. Oncotarget, 2016, 7(47):78069-78082. [26] 杨艳, 周禹, 隗雅姿, 等. PPARγ在自身免疫性疾病中的研究进展[J]. 药学学报, 2022, 57(10):3124-3132. [27] LIU C J, XIONG Q C, LI Q W, et al. CHD7 regulates bone-fat balance by suppressing PPAR-γ signaling[J]. Nat Commun, 2022, 13(1):1989. |