[1] LI Y T, YAN B S, HE S M. Advances and challenges in the treatment of lung cancer[J]. Biomed Pharmacother, 2023, 169: 115891. [2] LEE J H, SAXENA A, GIACCONE G. Advancements in small cell lung cancer[J]. Semin Cancer Biol, 2023, 93: 123-128. [3] MANSOURI S, HEYLMANN D, STIEWE T, et al. Cancer genome and tumor microenvironment: reciprocal crosstalk shapes lung cancer plasticity[J]. eLife, 2022, 11: e79895. [4] CAMPISI J. Cellular senescence and lung function during aging. Yin and Yang[J]. Annals ATS, 2016, 13(Sup 5): S402-S406. [5] GORGOULIS V, ADAMS P D, ALIMONTI A, et al. Cellular senescence: defining a path forward[J]. Cell, 2019, 179(4): 813-827. [6] SCHNEIDER J L, ROWE J H, GARCIA-DE-ALBA C, et al. The aging lung: Physiology, disease, and immunity[J]. Cell, 2021, 184(8): 1990-2019. [7] DOMEN A, DEBEN C, VERSWYVEL J, et al. Cellular senescence in cancer: clinical detection and prognostic implications[J]. J Exp Clin Cancer Res, 2022, 41(1): 360. [8] RUHLAND M K, ALSPACH E. Senescence and immunoregulation in the tumor microenvironment[J]. Front Cell Dev Biol, 2021, 9: 754069. [9] TAKASUGI M, YOSHIDA Y, OHTANI N. Cellular senescence and the tumour microenvironment[J]. Mol Oncol, 2022, 16(18): 3333-3351. [10] TCHKONIA T, ZHU Y, VAN DEURSEN J, et al. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities[J]. J Clin Invest, 2013, 123(3): 966-972. [11] COPPé J P, DESPREZ P Y, KRTOLICA A, et al. The senescence-associated secretory phenotype: the dark side of tumor suppression[J]. Annu Rev Pathol Mech Dis, 2010, 5: 99-118. [12] DEMARIA M, O’LEARY M N, CHANG J H, et al. Cellular senescence promotes adverse effects of chemotherapy and cancer relapse[J]. Cancer Discov, 2017, 7(2): 165-176. [13] BATLLE E, MASSAGUé J. Transforming growth factor-β signaling in immunity and cancer[J]. Immunity, 2019, 50(4): 924-940. [14] YANG X G, LIN Y L, SHI Y H, et al. FAP promotes immunosuppression by cancer-associated fibroblasts in the tumor microenvironment via STAT3-CCL2 signaling[J]. Cancer Res, 2016, 76(14): 4124-4135. [15] COURAU T, NEHAR-BELAID D, FLOREZ L, et al. TGF-β and VEGF cooperatively control the immunotolerant tumor environment and the efficacy of cancer immunotherapies[J]. JCI Insight, 2016, 1(9): e85974. [16] FAGET D V, REN Q H, STEWART S A. Unmasking senescence: context-dependent effects of SASP in cancer[J]. Nat Rev Cancer, 2019, 19(8): 439-453. [17] JHA S K, DE RUBIS G, DEVKOTA S R, et al. Cellular senescence in lung cancer: molecular mechanisms and therapeutic interventions[J]. Ageing Res Rev, 2024, 97: 102315. [18] LOO T M, MIYATA K, TANAKA Y, et al. Cellular senescence and senescence-associated secretory phenotype via the cGAS-STING signaling pathway in cancer[J]. Cancer Sci, 2020, 111(2): 304-311. [19] CRESPO J, SUN H Y, WELLING T H, et al. T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment[J]. Curr Opin Immunol, 2013, 25(2): 214-221. [20] ALSPACH E, LUSSIER D M, MICELI A P, et al. MHC-II neoantigens shape tumour immunity and response to immunotherapy[J]. Nature, 2019, 574(7780): 696-701. [21] SADIGHI AKHA A A. Aging and the immune system: an overview[J]. J Immunol Methods, 2018, 463: 21-26. [22] RU K, CUI L, WU C, et al. Exploring the molecular and immune landscape of cellular senescence in lung adenocarcinoma[J]. Front Immunol, 2024, 15: 1347770. [23] SUMITOMO R, HIRAI T, FUJITA M, et al. M2 tumor-associated macrophages promote tumor progression in non-small-cell lung cancer[J]. Exp Ther Med, 2019, 18(6): 4490-4498. [24] HASTON S, GONZALEZ-GUALDA E, MORSLI S, et al. Clearance of senescent macrophages ameliorates tumorigenesis in KRAS-driven lung cancer[J]. Cancer Cell, 2023, 41(7): 1242-1260.e6. [25] RUHLAND M K, LOZA A J, CAPIETTO A H, et al. Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis[J]. Nat Commun, 2016, 7: 11762. [26] SHIN E, BAK S H, PARK T, et al. Understanding NK cell biology for harnessing NK cell therapies: targeting cancer and beyond[J]. Front Immunol, 2023, 14: 1192907. [27] FORDER A, ZHUANG R, SOUZA V G P, et al. Mechanisms contributing to the comorbidity of COPD and lung cancer[J]. Int J Mol Sci, 2023, 24(3): 2859. [28] BARNES P J, BAKER J, DONNELLY L E. Cellular senescence as a mechanism and target in chronic lung diseases[J]. Am J Respir Crit Care Med, 2019, 200(5): 556-564. [29] HANSEL C, JENDROSSEK V, KLEIN D. Cellular senescence in the lung: the central role of senescent epithelial cells[J]. Int J Mol Sci, 2020, 21(9): 3279. [30] ALTORKI N K, MARKOWITZ G J, GAO D C, et al. The lung microenvironment: an important regulator of tumour growth and metastasis[J]. Nat Rev Cancer, 2019, 19(1): 9-31. [31] FANE M, WEERARATNA A T. How the ageing microenvironment influences tumour progression[J]. Nat Rev Cancer, 2020, 20(2): 89-106. [32] LóPEZ-OTíN C, BLASCO M A, PARTRIDGE L, et al. Hallmarks of aging: an expanding universe[J]. Cell, 2023, 186(2): 243-278. [33] BARTKOVA J, REZAEI N, LIONTOS M, et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints[J]. Nature, 2006, 444(7119): 633-637. [34] TEDESCHI V, PALDINO G, KUNKL M, et al. CD8+ T cell senescence: lights and shadows in viral infections, autoimmune disorders and cancer[J]. Int J Mol Sci, 2022, 23(6): 3374. [35] LEE S, SCHMITT C A. The dynamic nature of senescence in cancer[J]. Nat Cell Biol, 2019, 21(1): 94-101. [36] CHILDS B G, DURIK M, BAKER D J, et al. Cellular senescence in aging and age-related disease: from mechanisms to therapy[J]. Nat Med, 2015, 21(12): 1424-1435. [37] CHIBAYA L, SNYDER J, RUSCETTI M. Senescence and the tumor-immune landscape: implications for cancer immunotherapy[J]. Semin Cancer Biol, 2022, 86(Pt 3): 827-845. [38] RUSCETTI M, LEIBOLD J, BOTT M J, et al. NK cell-mediated cytotoxicity contributes to tumor control by a cytostatic drug combination[J]. Science, 2018, 362(6421): 1416-1422. [39] KIRKLAND J L, TCHKONIA T. Senolytic drugs: from discovery to translation[J]. J Intern Med, 2020, 288(5): 518-536. [40] ALEXA-STRATULAT T, PAVEL-TANASA M, CIANGA V A, et al. Immune senescence in non-small cell lung cancer management: therapeutic relevance, biomarkers, and mitigating approaches[J]. Expert Rev Anticancer Ther, 2022, 22(11): 1197-1210. [41] AMOR C, FEUCHT J, LEIBOLD J, et al. Senolytic CAR T cells reverse senescence-associated pathologies[J]. Nature, 2020, 583(7814): 127-132. [42] MENG J S, LI Y, WAN C, et al. Targeting senescence-like fibroblasts radiosensitizes non-small cell lung cancer and reduces radiation-induced pulmonary fibrosis[J]. JCI Insight, 2021, 6(23): e146334. |