[1] NAIRY R K, BHAT N N, SANJEEV G, et al. Dose-response study using micronucleus cytome assay: a tool for biodosimetry application[J]. Radiat Prot Dosimetry, 2017, 174(1): 79-87. [2] CAI T J, LU X, TIAN X L, et al. Effects of age and gender on the baseline and 2 Gy 60Co γ-ray-induced nucleoplasmic bridges frequencies in the peripheral blood lymphocytes of Chinese population[J]. Mutat Res Genet Toxicol Environ Mutagen, 2018, 832/833: 29-34. [3] GAJSKI G, GERIĆ M, OREŠČANIN V, et al. Cytokinesisblock micronucleus cytome assay parameters in peripheral blood lymphocytes of the general population: Contribution of age, sex, seasonal variations and lifestyle factors[J]. Ecotoxicol Environ Saf, 2018, 148: 561-570. [4] 戴宏,刘玉龙,王优优,等. 南京“5·7”192Ir源放射事故患者的生物剂量估算[J]. 中华放射医学与防护杂志, 2016, 36(5): 350-354. [5] 国家卫生健康委员会.放射工作人员职业健康检查外周血淋巴细胞微核检测方法与受照剂量估算标准:GBZ/T328—2023[S]. 北京: 中国标准出版社,2023. [6] Radiological protection-Performance criteria for laboratories using the cytokinesis block micronucleus (CBMN) assay in peripheral blood lymphocytes for biological dosimetry: ISO 17099[S]. ISO, 2014. [7] INTERNATIANAL ATOMIC ENERGY AGENCY. Cytogenetic dosimetry: application in preparedness for and response to radiation emergencies[R/OL]. [2025-05-18]. https://www-pub.iaea.org/MTCD/Publications/PDF/EPR-Biodosimetry%202011_web.pdf [8] SPROULL M, CAMPHAUSEN K. State-of-the-art advances in radiation biodosimetry for mass casualty events involving radiation exposure[J]. Radiat Res, 2016, 186(5): 423-435. [9] FENECH M. Cytokinesis-block micronucleus cytome assay[J]. Nat Protoc, 2007, 2(5): 1084-1104. [10] ZHAO H, LU X, LI S, et al. Characteristics of nucleoplasmic bridges induced by 60Co γ-rays in human peripheral blood lymphocytes[J]. Mutagenesis, 2014, 29(1): 49-51. [11] RODRIGUES M A, BEATON-GREEN L A, WILKINS R C, et al. The potential for complete automated scoring of the cytokinesis block micronucleus cytome assay using imaging flow cytometry[J]. Mutat Res Genet Toxicol Environ Mutagen, 2018, 836(Pt A): 53-64. [12] 赵骅,陆雪,田雪蕾,等.松胞素B对辐射诱导淋巴细胞核质桥水平影响的研究[J].中华放射医学与防护杂志, 2017, 37(8): 576-580. [13] 赵骅,蔡恬静,陆雪,等.优化胞质分裂阻滞实验方案用于核质桥分析的可行性[J].中华放射医学与防护杂志, 2021, 41(3): 178-182. [14] RODRIGUES M A, PROBST C E, BEATON-GREEN L A, et al. The effect of an optimized imaging flow cytometry analysis template on sample throughput in the reduced culture cytokinesis-block micronucleus assay[J]. Radiat Prot Dosimetry, 2016, 172(1/2/3): 223-229. [15] PAJIC J, RAKIC B. Re-evaluation of CBMN test reference values of persons continuously occupationally exposed to low doses of ionizing radiation in Serbia[J]. Mutat Res Genet Toxicol Environ Mutagen, 2023, 886: 503583. [16] ÇOBANOĞLU H, ÇAYıR A. Occupational exposure to radiation among health workers: Genome integrity and predictors of exposure[J]. Mutat Res Genet Toxicol Environ Mutagen, 2024, 893: 503726. [17] DHILLON V S, DEO P, FENECH M. The relationship between telomere length and nucleoplasmic bridges and severity of disease in prostate cancer patients[J]. Cancers, 2023, 15(13): 3351. [18] 刘倩琦,燕武,潘伟,等.儿童末梢全血和静脉血清检测IGF-1和 IGFBP-3的一致性研究[J].中华预防医学杂志, 2022, 56(12): 1855-1859. [19] ZAGUIA N, LAPLAGNE E, COLICCHIO B, et al. A new tool for genotoxic risk assessment: Reevaluation of the cytokinesisblock micronucleus assay using semi-automated scoring following telomere and centromere staining[J]. Mutat Res Genet Toxicol Environ Mutagen, 2020, 850/851: 503143. |