[1] CAO W, CHEN H D, YU Y W, et al. Changing profiles of cancer burden worldwide and in China:a secondary analysis of the global cancer statistics 2020[J]. Chin Med J, 2021, 134(7):783-791. [2] 李晓宇, 刘利平, 辛雨薇, 等. 人工智能软件联合超声造影鉴别诊断甲状腺良、恶性结节[J]. 中国医学影像学杂志, 2023, 31(3):226-230. [3] LIU Y H, LAI F H, LIN B, et al. Deep learning to predict cervical lymph node metastasis from intraoperative frozen section of tumour in papillary thyroid carcinoma:a multicentre diagnostic study[J]. EClinicalMedicine, 2023, 60:102007. [4] SANYAL P, MUKHERJEE T, BARUI S, et al. Artificial intelligence in cytopathology:a neural network to identify papillary carcinoma on thyroid fine-needle aspiration cytology smears[J]. J Pathol Inform, 2018, 9:43. [5] GUAN Q, WANG Y J, PING B, et al. Deep convolutional neural network VGG-16 model for differential diagnosing of papillary thyroid carcinomas in cytological images:a pilot study[J]. J Cancer, 2019, 10(20):4876-4882. [6] SAVALA R, DEY P, GUPTA N. Artificial neural network model to distinguish follicular adenoma from follicular carcinoma on fine needle aspiration of thyroid[J]. Diagn Cytopathol, 2018, 46(3):244-249. [7] ELLIOTT RANGE D D, DOV D, KOVALSKY S Z, et al. Application of a machine learning algorithm to predict malignancy in thyroid cytopathology[J]. Cancer Cytopathol, 2020, 128(4):287-295. [8] CHAIN K, LEGESSE T, HEATH J E, et al. Digital image-assisted quantitative nuclear analysis improves diagnostic accuracy of thyroid fine-needle aspiration cytology[J]. Cancer Cytopathol, 2019, 127(8):501-513. [9] YASHASWINI R, SURESH T N, SAGAYARAJ A. Cytological evaluation of thyroid lesions by nuclear morphology and nuclear morphometry[J]. J Cytol, 2017, 34(4):197-202. [10] KHATRI P, CHOUDHURY M, JAIN M, et al. Role of morphometry in the cytological differentiation of benign and malignant thyroid lesions[J]. J Cytol, 2017, 34(1):1-4. [11] DEKA L, GUPTA S, GUPTA R, et al. Nuclear morphometry and texture analysis on cytological smears of thyroid neoplasms:a study of 50 cases[J]. Malays J Pathol, 2017, 39(1):33-37. [12] MALEKI S, ZANDVAKILI A, GERA S, et al. Differentiating noninvasive follicular thyroid neoplasm with papillary-like nuclear features from classic papillary thyroid carcinoma:analysis of cytomorphologic descriptions using a novel machine-learning approach[J]. J Pathol Inform, 2019, 10:29. |