[1] SALMENA L, POLISENO L, TAY Y, et al. A ceRNA hypothesis:the Rosetta Stone of a hidden RNA language?[J]. Cell, 2011, 146(3):353-358. [2] TAY Y, RINN J, PANDOLFI P P. The multilayered complexity of ceRNA crosstalk and competition[J]. Nature, 2014, 505(7483):344-352. [3] SARAIVA C, ESTEVES M, BERNARDINO L. microRNA:Basic concepts and implications for regeneration and repair of neurodegenerative diseases[J]. Biochem Pharmacol, 2017, 141:118-131. [4] WAN P X, SU W R, ZHUO Y H. The role of long noncoding RNAs in neurodegenerative diseases[J]. Mol Neurobiol, 2017, 54(3):2012-2021. [5] HANAN M, SOREQ H, KADENER S. circRNAs in the brain[J]. RNA Biol, 2017, 14(8):1028-1034. [6] COSTA V, ESPOSITO R, APRILE M, et al. Non-coding RNA and Pseudogenes in neurodegenerative diseases:"The (un)Usual Suspects"[J]. Front Genet, 2012, 3:231. [7] HE L, CHEN Y, HAO S Q, et al. Uncovering novel landscape of cardiovascular diseases and therapeutic targets for cardioprotection via long noncoding RNA-miRNA-mRNA axes[J]. Epigenomics, 2018, 10(5):661-671. [8] WANG W J, WU D G, HE X T, et al. CCL18-induced HOTAIR upregulation promotes malignant progression in esophageal squamous cell carcinoma through the miR-130a-5p-ZEB1 Axis[J]. Cancer Lett, 2019, 460:18-28. [9] CHEN X Y, MAO R, SU W M, et al. Circular RNA circHIPK3 modulates autophagy via MIR124-3p-STAT3-PRKAA/AMPKα signaling in STK11 mutant lung cancer[J]. Autophagy, 2020, 16(4):659-671. [10] WANG W X, RAJEEV B W, STROMBERG A J, et al. The expression of microRNA miR-107 decreases early in Alzheimer's disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1[J]. J Neurosci, 2008, 28(5):1213-1223. [11] KE S, YANG Z H, YANG F, et al. Long noncoding RNA NEAT1 aggravates aβ-induced neuronal damage by targeting miR-107 in Alzheimer's disease[J]. Yonsei Med J, 2019, 60(7):640-650. [12] ZHAO M Y, WANG G Q, WANG N N, et al. The long-non-coding RNA NEAT1 is a novel target for Alzheimer's disease progression via miR-124/BACE1 Axis[J]. Neurol Res, 2019, 41(6):489-497. [13] SPREAFICO M, GRILLO B, RUSCONI F, et al. Multiple layers of CDK5R1 regulation in Alzheimer's disease implicate long non-coding RNAs[J]. Int J Mol Sci, 2018, 19(7):E2022. [14] JIANG Q, SHAN K, QUN-WANG X, et al. Long non-coding RNA-MIAT promotes neurovascular remodeling in the eye and brain[J]. Oncotarget, 2016, 7(31):49688-49698. [15] WANG J D, ZHOU T T, WANG T, et al. Suppression of lncRNA-ATB prevents amyloid-β-induced neurotoxicity in PC12 cells via regulating miR-200/ZNF217 Axis[J]. Biomed Pharmacother, 2018, 108:707-715. [16] ZHANG S, ZHU D N, LI H, et al. Characterization of circRNA-associated-ceRNA networks in a senescence-accelerated mouse prone 8 brain[J]. Mol Ther, 2017, 25(9):2053-2061. [17] SEKAR S, CUYUGAN L, ADKINS J, et al. Circular RNA expression and regulatory network prediction in posterior cingulate astrocytes in elderly subjects[J]. BMC Genomics, 2018, 19(1):340. [18] BARBASH S, SIMCHOVITZ A, BUCHMAN A S, et al. Neuronal-expressed microRNA-targeted Pseudogenes compete with coding genes in the human brain[J]. Transl Psychiatry, 2017, 7(8):e1199. [19] KANG S S, ZHANG Z T, LIU X, et al. Α-Synuclein binds and sequesters PIKE-L into Lewy bodies, triggering dopaminergic cell death via AMPK hyperactivation[J]. Proc Natl Acad Sci USA, 2017, 114(5):1183-1188. [20] POLYMEROPOULOS M H, LAVEDAN C, LEROY E, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease[J]. Science, 1997, 276(5321):2045-2047. [21] SANG Q L, LIU X Y, WANG L B, et al. CircSNCA downregulation by pramipexole treatment mediates cell apoptosis and autophagy in Parkinson's disease by targeting miR-7[J]. Aging (Albany NY), 2018, 10(6):1281-1293. [22] KUMAR L, SHAMSUZZAMA, JADIYA P, et al. Functional characterization of novel circular RNA molecule, circzip-2 and its synthesizing gene zip-2 in C. elegans model of Parkinson's disease[J]. Mol Neurobiol, 2018, 55(8):6914-6926. [23] CHI L M, WANG L P, JIAO D. Identification of differentially expressed genes and long noncoding RNAs associated with Parkinson's disease[J]. Parkinsons Dis, 2019, 2019:6078251. [24] STRANIERO L, RIMOLDI V, SAMARANI M, et al. The GBAP1 pseudogene Acts as a ceRNA for the glucocerebrosidase gene GBA by sponging miR-22-3p[J]. Sci Rep, 2017, 7(1):12702. [25] CHUNG D W, RUDNICKI D D, YU L, et al. A natural antisense transcript at the Huntington's disease repeat locus regulates HTT expression[J]. Hum Mol Genet, 2011, 20(17):3467-3477. [26] CHANDA K, DAS S, CHAKRABORTY J, et al. Altered levels of long NcRNAs Meg3 and Neat1 in cell and animal models of Huntington's disease[J]. RNA Biol, 2018, 15(10):1348-1363. [27] MURAOKA Y, NAKAMURA A, TANAKA R, et al. Genetic screening of the genes interacting with Drosophila FIG4 identified a novel link between CMT-causing gene and long noncoding RNAs[J]. Exp Neurol, 2018, 310:1-13. |