[1] RAZA C, ANJUM R, SHAKEEL N U A. Parkinson's disease:Mechanisms, translational models and management strategies[J]. Life Sci, 2019, 226:77-90. [2] TOLOSA E, GARRIDO A, SCHOLZ S W, et al. Challenges in the diagnosis of Parkinson's disease[J]. Lancet Neurol, 2021, 20(5):385-397. [3] NALLS M A, BLAUWENDRAAT C, VALLERGA C L, et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease:a meta-analysis of genome-wide association studies[J]. Lancet Neurol, 2019, 18(12):1091-1102. [4] SCHNEIDER R B, IOURINETS J, RICHARD I H. Parkinson's disease psychosis:presentation, diagnosis and management[J]. Neurodegener Dis Manag, 2017, 7(6):365-376. [5] LI J, JIN M, WANG L, et al. MDS clinical diagnostic criteria for Parkinson's disease in China[J]. J Neurol, 2017, 264(3):476-481. [6] CHANG K H, CHEN C M. The role of oxidative stress in Parkinson's disease[J]. Antioxidants (Basel), 2020, 9(7):597. [7] BEKKER M, ABRAHAMS S, LOOS B, et al. Can the interplay between autophagy and apoptosis be targeted as a novel therapy for Parkinson's disease-[J]. Neurobiol Aging, 2021, 100:91-105. [8] DU X Y, XIE X X, LIU R T. The role of α-synuclein oligomers in Parkinson's disease[J]. Int J Mol Sci, 2020, 21(22):8645. [9] DIONíSIO P A, AMARAL J D, RODRIGUES C M P. Oxidative stress and regulated cell death in Parkinson's disease[J]. Ageing Res Rev, 2021, 67:101263. [10] 陈红利, 梁会娟, 李燕. 黄连碱上调miR-146a-5p后通过PI3K/AKT通路减轻由MPP+诱导的帕金森病细胞模型损伤[J]. 中华神经医学杂志, 2020, 19(1):2-8. [11] 高继英, 石代乐, 王刚. 长链非编码RNA NORAD过表达通过靶向调控miR-132-5p/Bcl-2改善MPP+诱导的帕金森细胞模型损伤实验研究[J]. 陕西医学杂志, 2023, 52(4):363-368, 384. [12] WU Z Y, WEI N. METTL3-mediated HOTAIRM1 promotes vasculogenic mimicry icontributionsn glioma via regulating IGFBP2 expression[J]. J Transl Med, 2023, 21(1):855. [13] ZHAO Y Q, WANG W N, GUAN C H, et al. Long noncoding RNA HOTAIRM1 in human cancers[J]. Clin Chim Acta, 2020, 511:255-259. [14] REN Y, ZHANG K, WANG J Z, et al. HOTAIRM1 promotes osteogenic differentiation and alleviates osteoclast differentiation by inactivating the NF-κB pathway[J]. Acta Biochim Biophys Sin, 2021, 53(2):201-211. [15] CHEN W K, LIU J L, GE F, et al. Long noncoding RNA HOTAIRM1 promotes immunosuppression in sepsis by inducing T cell exhaustion[J]. J Immunol, 2022, 208(3):618-632. [16] DAI H Y, CHANG M X, SUN L. HOTAIRM1 knockdown reduces[MPP+]-induced oxidative stress injury of SH-SY5Y cells by activating the Nrf2/HO-1 pathway[J]. Transl Neurosci, 2023, 14(1):20220296. [17] LI X L, PANG L, YANG Z, et al. LncRNA HOTAIRM1/HOXA1 axis promotes cell proliferation, migration and invasion in endometrial cancer[J]. Onco Targets Ther, 2019, 12:10997-11015. [18] XIN C Q, LIU J. Long non-coding RNAs in Parkinson's disease[J]. Neurochem Res, 2021, 46(5):1031-1042. [19] FAN Y, LI J Y, YANG Q M, et al. Dysregulated long non-coding RNAs in[Parkinson's] disease contribute to the apoptosis of human neuroblastoma cells[J]. Front Neurosci, 2019, 13:1320. [20] HUANG T, ZHAO J Y, PAN R R, et al. Dysregulation of circulatory levels of lncRNAs in[Parkinson's] disease[J]. Mol Neurobiol, 2023, 60(1):317-328. [21] JAVED H, MENON S A, AL-MANSOORI K M, et al. Development of nonviral vectors targeting the brain as a therapeutic approach for[Parkinson's] disease and other brain disorders[J]. Mol Ther, 2016, 24(4):746-758. [22] CHEN L, HU N, WANG C, et al. HOTAIRM1 knockdown enhances cytarabine-induced cytotoxicity by suppression of glycolysis through the Wnt/β-catenin/PFKP pathway in acute myeloid leukemia cells[J]. Arch Biochem Biophys, 2020, 680:108244. [23] CHEN C L, ZHANG S J, WEI Y H, et al. LncRNA RMST regulates neuronal apoptosis and inflammatory response via sponging miR-150-5p in[Parkinson's] disease[J]. Neuro-immunomodulation, 2022, 29(1):55-62. [24] HUANG Y J, LIU Y, HUANG J, et al. Let-7b-5p promotes cell apoptosis in[Parkinson's] disease by targeting HMGA2[J]. Mol Med Rep, 2021, 24(5):820. |