[1] CHATTERJEE N, WALKER G C. Mechanisms of DNA damage, repair, and mutagenesis[J]. Environ Mol Mutagen, 2017, 58(5): 235-263. [2] LÖBRICH M, SHIBATA A, BEUCHER A, et al. gammaH2AX foci analysis for monitoring DNA double-strand break repair: strengths, limitations and optimization[J]. Cell Cycle, 2010, 9(4): 662-669. [3] CARUSILLO A, MUSSOLINO C. DNA damage: from threat to treatment[J]. Cells, 2020, 9(7): 1665. [4] FYTIANOS G, RAHDAR A, KYZAS G Z. Nanomaterials in cosmetics: recent updates[J]. Nanomaterials (Basel), 2020, 10(5): 979. [5] 唐颖, 黄琼毅, 王晓莲, 等. 生物合成金/银纳米颗粒在化妆品领域的应用研究进展[J]. 轻工学报, 2022, 37(3): 108-116, 126. [6] GUICHARD Y, SCHMIT J, DARNE C, et al. Cytotoxicity and genotoxicity of nanosized and microsized titanium dioxide and iron oxide particles in Syrian hamster embryo cells[J]. Ann Occup Hyg, 2012, 56(5): 631-644. [7] YU Z J, LI Q, WANG J, et al. Reactive oxygen species-related nanoparticle toxicity in the biomedical field[J]. Nanoscale Res Lett, 2020, 15(1): 115. [8] YAHYAEI B, NOURI M, BAKHERAD S, et al. Effects of biologically produced gold nanoparticles: toxicity assessment in different rat organs after intraperitoneal injection[J]. AMB Express, 2019, 9(1): 38. [9] FEDE C, FORTUNATI I, WEBER V, et al. Evaluation of gold nanoparticles toxicity towards human endothelial cells under static and flow conditions[J]. Microvasc Res, 2015, 97: 147-155. [10] áVALOS A, HAZA A I, MATEO D, et al. In vitro and in vivo genotoxicity assessment of gold nanoparticles of different sizes by comet and SMART assays[J]. Food Chem Toxicol, 2018, 120: 81-88. [11] ENGSTROM A M, FAASE R A, MARQUART G W, et al. Size-dependent interactions of lipid-coated gold nanoparticles: developing a better mechanistic understanding through model cell membranes and in vivo toxicity[J]. Int J Nanomedicine, 2020, 15: 4091-4104. [12] ENEA M, PEREIRA E, COSTA J, et al. Cellular uptake and toxicity of gold nanoparticles on two distinct hepatic cell models[J]. Toxicol In Vitro, 2021, 70: 105046. [13] HU S Q, HUANG P J J, WANG J X, et al. Dissecting the effect of salt for more sensitive label-free colorimetric detection of DNA using gold nanoparticles[J]. Anal Chem, 2020, 92(19): 13354-13360. [14] OECD. OECD Environment, Health and Safety Publications Series on the Safety of Manufactured Nanomaterials No. 43. Genotoxicity of manufactured nanomaterials: Report of the OECD expert meeting[EB/OL]. (2014-12-03)[2023-11-10]. http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/-cote=env/jm/mono(2014)34&doclanguage=en. [15] 国家市场监督管理总局, 国家标准化管理委员会. 纳米技术纳米材料遗传毒性试验方法指南: GB/Z 42246—2022[S]. 北京: 中国标准出版社, 2022: 7. [16] 黄鹏程, 周长慧, 李申宁, 等. 基于流式细胞术的组蛋白γ-H2AX磷酸化检测方法的建立[J]. 癌变·畸变·突变, 2017, 29(4): 284-288. [17] KUMAR A, PANDEY A K, SINGH S S, et al. Cellular uptake and mutagenic potential of metal oxide nanoparticles in bacterial cells[J]. Chemosphere, 2011, 83(8): 1124-1132. [18] DOAK S H, DUSINSKA M. NanoGenotoxicology: present and the future[J]. Mutagenesis, 2017, 32(1): 1-4. [19] WANG Y D, ZHANG H S, SHI L, et al. A focus on the genotoxicity of gold nanoparticles[J]. Nanomedicine (Lond), 2020, 15(4): 319-323. [20] BRYCE S M, BERNACKI D T, BEMIS J C, et al. Genotoxic mode of action predictions from a multiplexed flow cytometric assay and a machine learning approach[J]. Environ Mol Mutagen, 2016, 57(3): 171-189. [21] 李俊英, 张士猛, 周平坤. H2AX磷酸化与去磷酸化的分子机制及其对DNA损伤修复反应的调节作用[J]. 军事医学, 2013, 37(3): 227-230. [22] BHAMIDIPATI M, FABRIS L. Multiparametric assessment of gold nanoparticle cytotoxicity in cancerous and healthy cells: the role of size, shape, and surface chemistry[J]. Bioconjug Chem, 2017, 28(2): 449-460. [23] KUS-LIŚKIEWICZ M, FICKERS P, BEN TAHAR I. Biocompatibility and cytotoxicity of gold nanoparticles: recent advances in methodologies and regulations[J]. Int J Mol Sci, 2021, 22(20): 10952. [24] 江龙, 王清叶, 崔文娟. 金纳米颗粒的细胞毒性和促细胞生长作用[J]. 化学进展, 2013, 25(10): 1631-1641. [25] STECKIEWICZ K P, BARCINSKA E, MALANKOWSKA A, et al. Impact of gold nanoparticles shape on their cytotoxicity against human osteoblast and osteosarcoma in vitro model. Evaluation of the safety of use and anti-cancer potential[J]. J Mater Sci Mater Med, 2019, 30(2): 22. [26] GUERRINI L, ALVAREZ-PUEBLA R A, PAZOS-PEREZ N. Surface modifications of nanoparticles for stability in biological fluids[J]. Materials, 2018, 11(7): 1154. [27] 姜宜凡, 常雪灵, 赵宇亮. 纳米材料毒理学及安全性评价[J]. 口腔护理用品工业, 2013, 23(4): 11-33. [28] 高家敏, 苏哲, 余振喜, 等. 欧盟化妆品纳米原料法规管理现状及思考[J]. 香料香精化妆品, 2022(5): 82-88. [29] 刘颖, 吴美玉, 刘伊, 等. 纳米生物材料标准化检测和评价的现状与展望[J]. 科学通报, 2023, 68(32): 4281-4301. |