[1] SAHOO L, PAIKRAY S K, TRIPATHY N S, et al. Advancements in nanotheranostics for glioma therapy[J]. Naunyn Schmiedeberg’s Arch Pharmacol, 2025, 398(3): 2587-2608. [2] LEONE A, COLAMARIA A, FOCHI N P, et al. Recurrent glioblastoma treatment: state of the art and future perspectives in the precision medicine era[J]. Biomedicines, 2022, 10(8): 1927. [3] ERICES J I, BIZAMA C, NIECHI I, et al. Glioblastoma microenvironment and invasiveness: new insights and therapeutic targets[J]. Int J Mol Sci, 2023, 24(8): 7047. [4] SALLBACH J, WOODS M, RASENBERGER B, et al. The cell cycle inhibitor p21CIP1 is essential for irinotecan-induced senescence and plays a decisive role in re-sensitization of temozolomide-resistant glioblastoma cells to irinotecan[J]. Biomed Pharmacother, 2024, 181: 117634. [5] BELTZIG L, CHRISTMANN M, KAINA B. Abrogation of cellular senescence induced by temozolomide in glioblastoma cells: search for senolytics[J]. Cells, 2022, 11(16): 2588. [6] KAINA B. Temozolomide, procarbazine and nitrosoureas in the therapy of malignant gliomas: update of mechanisms, drug resistance and therapeutic implications[J]. J Clin Med, 2023, 12(23): 7442. [7] REZAEI T, HEJAZI M, MANSOORI B, et al. microRNA-181a mediates the chemo-sensitivity of glioblastoma to carmustine and regulates cell proliferation, migration, and apoptosis[J]. Eur J Pharmacol, 2020, 888: 173483. [8] ZUCHEGNA C, LEONE S, ROMANO A, et al. KRAS is a molecular determinant of platinum responsiveness in glioblastoma[J]. BMC Cancer, 2024, 24(1): 77. [9] PHAM J, COTE D J, KANG K, et al. Treatment practices and survival outcomes for IDH-wildtype glioblastoma patients according to MGMT promoter methylation status: insights from the U.S. National Cancer Database[J]. J Neurooncol, 2025, 172(3): 655-665. [10] HO K H, HSU S Y, CHEN P H, et al. Hypoxia enhances IL-8 signaling through inhibiting miR-128-3p expression in glioblastomas[J]. Biochim Biophys Acta BBA Mol Cell Res, 2025, 1872(2): 119885. [11] TAO W W, CHU C W, ZHOU W C, et al. Dual Role of WISP1 in maintaining glioma stem cells and tumor-supportive macrophages in glioblastoma[J]. Nat Commun, 2020, 11(1): 3015. [12] MALHOTRA D, GABRANI R. Metabolic shifts in glioblastoma: unraveling altered pathways and exploring novel therapeutic avenues[J]. Mol Biol Rep, 2025, 52(1): 146. [13] YU T, WANG K, WANG J W, et al. M-MDSCs mediated trans-BBB drug delivery for suppression of glioblastoma recurrence post-standard treatment[J]. J Control Release, 2024, 369: 199-214. [14] HAYFLICK L, MOORHEAD P S. The serial cultivation of human diploid cell strains[J]. Exp Cell Res, 1961, 25: 585-621. [15] PARK J W, BAE Y S. Downregulation of JMJD2a and LSD1 is involved in CK2 inhibition-mediated cellular senescence through the p53-SUV39h1 pathway[J]. BMB Rep, 2022, 55(2): 92-97. [16] DHOKIA V, MOSS J A Y, MACIP S, et al. At the crossroads of life and death: the proteins that influence cell fate decisions[J]. Cancers (Basel), 2022, 14(11): 2745. [17] PRINCILLY J, VEERABHADRAPPA B, RAO N N, et al. Cellular senescence in aging: Molecular basis, implications and therapeutic interventions[J]. Adv Protein Chem Struct Biol, 2023, 136: 1-33. [18] CUI H, FU L Q, TENG Y, et al. Human hair follicle mesenchymal stem cell-derived exosomes attenuate UVB-induced photoaging via the miR-125b-5p/TGF-β1/smad axis[J]. Biomater Res, 2025, 29: 0121. [19] BARRIUSO D, ALVAREZ-FRUTOS L, GONZALEZ-GUTIERREZ L, et al. Involvement of bcl-2 family proteins in tetraploidization-related senescence[J]. Int J Mol Sci, 2023, 24(7): 6374. [20] ZHOU Y C, ZENG L, CAI L B, et al. Cellular senescence-associated gene IFI16 promotes HMOX1-dependent evasion of ferroptosis and radioresistance in glioblastoma[J]. Nat Commun, 2025, 16(1): 1212. [21] LI C H, YUAN Y X, JIA Y D, et al. Cellular senescence: from homeostasis to pathological implications and therapeutic strategies[J]. Front Immunol, 2025, 16: 1534263. [22] ALHADDAD L, NOFAL Z, PUSTOVALOVA M, et al. Long-term cultured human glioblastoma multiforme cells demonstrate increased radiosensitivity and senescence-associated secretory phenotype in response to irradiation[J]. Int J Mol Sci, 2023, 24(3): 2002. [23] PUTAVET D A, DE KEIZER P L J. Residual disease in glioma recurrence: a dangerous liaison with senescence[J]. Cancers (Basel), 2021, 13(7): 1560. [24] AASLAND D, G-TZINGER L, HAUCK L, et al. Temozolomide induces senescence and repression of DNA repair pathways in glioblastoma cells via activation of ATR-CHK1, p21, and NF-κB[J]. Cancer Res, 2019, 79(1): 99-113. [25] TANAKA Y, NAKAZAWA T, NAKAMURA M, et al. Ex vivo-expanded highly purified natural killer cells in combination with temozolomide induce antitumor effects in human glioblastoma cells in vitro[J]. PLoS One, 2019, 14(3): e0212455. [26] KUMAR R, GONT A, PERKINS T J, et al. Induction of senescence in primary glioblastoma cells by serum and TGFβ[J]. Sci Rep, 2017, 7(1): 2156. [27] TOMIMATSU N, DI CRISTOFARO L F M, KANJI S, et al. Targeting cIAP2 in a novel senolytic strategy prevents glioblastoma recurrence after radiotherapy[J]. EMBO Mol Med, 2025, 17(4): 645-678. [28] CHOJAK R, FARES J, PETROSYAN E, et al. Cellular senescence in glioma[J]. J Neurooncol, 2023, 164(1): 11-29. [29] FLETCHER-SANANIKONE E, KANJI S M, TOMIMATSU N, et al. Elimination of radiation-induced senescence in the brain tumor microenvironment attenuates glioblastoma recurrence[J]. Cancer Res, 2021, 81(23): 5935-5947. [30] WEE C W, LEE J H, LEE H I, et al. To use or not to use: temozolomide in elderly patients with IDH wild-type MGMT promoter unmethylated glioblastoma treated with radiotherapy[J]. Cancer Res Treat, 2024. [31] PUCA A A, LOPARDO V, MONTELLA F, et al. The longevity-associated variant of BPIFB4 reduces senescence in glioma cells and in patients—lymphocytes favoring chemotherapy efficacy[J]. Cells, 2022, 11(2): 294. |